common_macro/
range_fn.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use proc_macro::TokenStream;
use quote::quote;
use syn::spanned::Spanned;
use syn::{
    parse_macro_input, Attribute, Ident, ItemFn, Signature, Type, TypeReference, Visibility,
};

use crate::utils::extract_input_types;

macro_rules! ok {
    ($item:expr) => {
        match $item {
            Ok(item) => item,
            Err(e) => return e.into_compile_error().into(),
        }
    };
}

pub(crate) fn process_range_fn(args: TokenStream, input: TokenStream) -> TokenStream {
    let mut name: Option<Ident> = None;
    let mut display_name: Option<Ident> = None;
    let mut ret: Option<Ident> = None;

    let parser = syn::meta::parser(|meta| {
        if meta.path.is_ident("name") {
            name = Some(meta.value()?.parse()?);
            Ok(())
        } else if meta.path.is_ident("display_name") {
            display_name = Some(meta.value()?.parse()?);
            Ok(())
        } else if meta.path.is_ident("ret") {
            ret = Some(meta.value()?.parse()?);
            Ok(())
        } else {
            Err(meta.error("unsupported property"))
        }
    });

    // extract arg map
    parse_macro_input!(args with parser);

    // decompose the fn block
    let compute_fn = parse_macro_input!(input as ItemFn);
    let ItemFn {
        attrs,
        vis,
        sig,
        block,
    } = compute_fn;

    // extract fn arg list
    let Signature {
        inputs,
        ident: fn_name,
        ..
    } = &sig;
    let arg_types = ok!(extract_input_types(inputs));

    // with format like Float64Array
    let array_types = arg_types
        .iter()
        .map(|ty| {
            if let Type::Reference(TypeReference { elem, .. }) = ty {
                elem.as_ref().clone()
            } else {
                ty.clone()
            }
        })
        .collect::<Vec<_>>();

    let mut result = TokenStream::new();

    // build the struct and its impl block
    // only do this when `display_name` is specified
    if let Some(display_name) = display_name {
        let struct_code = build_struct(
            attrs,
            vis,
            name.clone().expect("name required"),
            display_name,
            array_types,
            ret.clone().expect("ret required"),
        );
        result.extend(struct_code);
    }

    let calc_fn_code = build_calc_fn(
        name.expect("name required"),
        arg_types,
        fn_name.clone(),
        ret.expect("ret required"),
    );
    // preserve this fn, but remove its `pub` modifier
    let input_fn_code: TokenStream = quote! {
        #sig { #block }
    }
    .into();

    result.extend(calc_fn_code);
    result.extend(input_fn_code);
    result
}

fn build_struct(
    attrs: Vec<Attribute>,
    vis: Visibility,
    name: Ident,
    display_name_ident: Ident,
    array_types: Vec<Type>,
    return_array_type: Ident,
) -> TokenStream {
    let display_name = display_name_ident.to_string();
    quote! {
        #(#attrs)*
        #[derive(Debug)]
        #vis struct #name {}

        impl #name {
            pub const fn name() -> &'static str {
                #display_name
            }

            pub fn scalar_udf() -> ScalarUDF {
                datafusion_expr::create_udf(
                    Self::name(),
                    Self::input_type(),
                    Arc::new(Self::return_type()),
                    Volatility::Immutable,
                    Arc::new(Self::calc) as _,
                )
            }

            fn input_type() -> Vec<DataType> {
                vec![#( RangeArray::convert_data_type(#array_types::new_null(0).data_type().clone()), )*]
            }

            fn return_type() -> DataType {
                #return_array_type::new_null(0).data_type().clone()
            }
        }
    }
    .into()
}

fn build_calc_fn(
    name: Ident,
    param_types: Vec<Type>,
    fn_name: Ident,
    ret_type: Ident,
) -> TokenStream {
    let param_names = param_types
        .iter()
        .enumerate()
        .map(|(i, ty)| Ident::new(&format!("param_{}", i), ty.span()))
        .collect::<Vec<_>>();
    let unref_param_types = param_types
        .iter()
        .map(|ty| {
            if let Type::Reference(TypeReference { elem, .. }) = ty {
                elem.as_ref().clone()
            } else {
                ty.clone()
            }
        })
        .collect::<Vec<_>>();
    let num_params = param_types.len();
    let param_numbers = (0..num_params).collect::<Vec<_>>();
    let range_array_names = param_names
        .iter()
        .map(|name| Ident::new(&format!("{}_range_array", name), name.span()))
        .collect::<Vec<_>>();
    let first_range_array_name = range_array_names.first().unwrap().clone();
    let first_param_name = param_names.first().unwrap().clone();

    quote! {
        impl #name {
            fn calc(input: &[ColumnarValue]) -> Result<ColumnarValue, DataFusionError> {
                assert_eq!(input.len(), #num_params);

                #( let #range_array_names = RangeArray::try_new(extract_array(&input[#param_numbers])?.to_data().into())?; )*

                // check arrays len
                {
                    let len_first = #first_range_array_name.len();
                    #(
                        if len_first != #range_array_names.len() {
                            return Err(DataFusionError::Execution(format!("RangeArray have different lengths in PromQL function {}: array1={}, array2={}", #name::name(), len_first, #range_array_names.len())));
                        }
                    )*
                }

                let mut result_array = Vec::new();
                for index in 0..#first_range_array_name.len(){
                    #( let #param_names = #range_array_names.get(index).unwrap().as_any().downcast_ref::<#unref_param_types>().unwrap().clone(); )*

                    // check element len
                    {
                        let len_first = #first_param_name.len();
                        #(
                            if len_first != #param_names.len() {
                                return Err(DataFusionError::Execution(format!("RangeArray's element {} have different lengths in PromQL function {}: array1={}, array2={}", index, #name::name(), len_first, #param_names.len())));
                            }
                        )*
                    }

                    let result = #fn_name(#( &#param_names, )*);
                    result_array.push(result);
                }

                let result = ColumnarValue::Array(Arc::new(#ret_type::from_iter(result_array)));
                Ok(result)
            }
        }
    }
    .into()
}