common_grpc_expr/
util.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::collections::HashSet;

use api::v1::column_data_type_extension::TypeExt;
use api::v1::column_def::{contains_fulltext, contains_skipping};
use api::v1::{
    AddColumn, AddColumns, Column, ColumnDataType, ColumnDataTypeExtension, ColumnDef,
    ColumnOptions, ColumnSchema, CreateTableExpr, JsonTypeExtension, SemanticType,
};
use datatypes::schema::Schema;
use snafu::{ensure, OptionExt, ResultExt};
use table::metadata::TableId;
use table::table_reference::TableReference;

use crate::error::{
    self, DuplicatedColumnNameSnafu, DuplicatedTimestampColumnSnafu,
    InvalidStringIndexColumnTypeSnafu, MissingTimestampColumnSnafu, Result,
    UnknownColumnDataTypeSnafu,
};
pub struct ColumnExpr<'a> {
    pub column_name: &'a str,
    pub datatype: i32,
    pub semantic_type: i32,
    pub datatype_extension: &'a Option<ColumnDataTypeExtension>,
    pub options: &'a Option<ColumnOptions>,
}

impl<'a> ColumnExpr<'a> {
    #[inline]
    pub fn from_columns(columns: &'a [Column]) -> Vec<Self> {
        columns.iter().map(Self::from).collect()
    }

    #[inline]
    pub fn from_column_schemas(schemas: &'a [ColumnSchema]) -> Vec<Self> {
        schemas.iter().map(Self::from).collect()
    }
}

impl<'a> From<&'a Column> for ColumnExpr<'a> {
    fn from(column: &'a Column) -> Self {
        Self {
            column_name: &column.column_name,
            datatype: column.datatype,
            semantic_type: column.semantic_type,
            datatype_extension: &column.datatype_extension,
            options: &column.options,
        }
    }
}

impl<'a> From<&'a ColumnSchema> for ColumnExpr<'a> {
    fn from(schema: &'a ColumnSchema) -> Self {
        Self {
            column_name: &schema.column_name,
            datatype: schema.datatype,
            semantic_type: schema.semantic_type,
            datatype_extension: &schema.datatype_extension,
            options: &schema.options,
        }
    }
}

fn infer_column_datatype(
    datatype: i32,
    datatype_extension: &Option<ColumnDataTypeExtension>,
) -> Result<ColumnDataType> {
    let column_type =
        ColumnDataType::try_from(datatype).context(UnknownColumnDataTypeSnafu { datatype })?;

    if matches!(&column_type, ColumnDataType::Binary) {
        if let Some(ext) = datatype_extension {
            let type_ext = ext
                .type_ext
                .as_ref()
                .context(error::MissingFieldSnafu { field: "type_ext" })?;
            if *type_ext == TypeExt::JsonType(JsonTypeExtension::JsonBinary.into()) {
                return Ok(ColumnDataType::Json);
            }
        }
    }

    Ok(column_type)
}

pub fn build_create_table_expr(
    table_id: Option<TableId>,
    table_name: &TableReference<'_>,
    column_exprs: Vec<ColumnExpr>,
    engine: &str,
    desc: &str,
) -> Result<CreateTableExpr> {
    // Check for duplicate names. If found, raise an error.
    //
    // The introduction of hashset incurs additional memory overhead
    // but achieves a time complexity of O(1).
    //
    // The separate iteration over `column_exprs` is because the CPU prefers
    // smaller loops, and avoid cloning String.
    let mut distinct_names = HashSet::with_capacity(column_exprs.len());
    for ColumnExpr { column_name, .. } in &column_exprs {
        ensure!(
            distinct_names.insert(*column_name),
            DuplicatedColumnNameSnafu { name: *column_name }
        );
    }

    let mut column_defs = Vec::with_capacity(column_exprs.len());
    let mut primary_keys = Vec::with_capacity(column_exprs.len());
    let mut time_index = None;

    for expr in column_exprs {
        let ColumnExpr {
            column_name,
            datatype,
            semantic_type,
            datatype_extension,
            options,
        } = expr;

        let mut is_nullable = true;
        match semantic_type {
            v if v == SemanticType::Tag as i32 => primary_keys.push(column_name.to_owned()),
            v if v == SemanticType::Timestamp as i32 => {
                ensure!(
                    time_index.is_none(),
                    DuplicatedTimestampColumnSnafu {
                        exists: time_index.as_ref().unwrap(),
                        duplicated: column_name,
                    }
                );
                time_index = Some(column_name.to_owned());
                // Timestamp column must not be null.
                is_nullable = false;
            }
            _ => {}
        }

        let column_type = infer_column_datatype(datatype, datatype_extension)?;

        ensure!(
            (!contains_fulltext(options) && !contains_skipping(options))
                || column_type == ColumnDataType::String,
            InvalidStringIndexColumnTypeSnafu {
                column_name,
                column_type,
            }
        );

        column_defs.push(ColumnDef {
            name: column_name.to_owned(),
            data_type: datatype,
            is_nullable,
            default_constraint: vec![],
            semantic_type,
            comment: String::new(),
            datatype_extension: *datatype_extension,
            options: options.clone(),
        });
    }

    let time_index = time_index.context(MissingTimestampColumnSnafu {
        msg: format!("table is {}", table_name.table),
    })?;

    Ok(CreateTableExpr {
        catalog_name: table_name.catalog.to_string(),
        schema_name: table_name.schema.to_string(),
        table_name: table_name.table.to_string(),
        desc: desc.to_string(),
        column_defs,
        time_index,
        primary_keys,
        create_if_not_exists: true,
        table_options: Default::default(),
        table_id: table_id.map(|id| api::v1::TableId { id }),
        engine: engine.to_string(),
    })
}

/// Find columns that are not present in the schema and return them as `AddColumns`
/// for adding columns automatically.
/// It always sets `add_if_not_exists` to `true` for now.
pub fn extract_new_columns(
    schema: &Schema,
    column_exprs: Vec<ColumnExpr>,
) -> Result<Option<AddColumns>> {
    let columns_to_add = column_exprs
        .into_iter()
        .filter(|expr| schema.column_schema_by_name(expr.column_name).is_none())
        .map(|expr| {
            let column_def = Some(ColumnDef {
                name: expr.column_name.to_string(),
                data_type: expr.datatype,
                is_nullable: true,
                default_constraint: vec![],
                semantic_type: expr.semantic_type,
                comment: String::new(),
                datatype_extension: *expr.datatype_extension,
                options: expr.options.clone(),
            });
            AddColumn {
                column_def,
                location: None,
                add_if_not_exists: true,
            }
        })
        .collect::<Vec<_>>();

    if columns_to_add.is_empty() {
        Ok(None)
    } else {
        let mut distinct_names = HashSet::with_capacity(columns_to_add.len());
        for add_column in &columns_to_add {
            let name = add_column.column_def.as_ref().unwrap().name.as_str();
            ensure!(
                distinct_names.insert(name),
                DuplicatedColumnNameSnafu { name }
            );
        }

        Ok(Some(AddColumns {
            add_columns: columns_to_add,
        }))
    }
}
#[cfg(test)]
mod tests {
    use std::sync::Arc;
    use std::{assert_eq, vec};

    use api::helper::ColumnDataTypeWrapper;
    use api::v1::column::Values;
    use api::v1::column_data_type_extension::TypeExt;
    use api::v1::{
        Column, ColumnDataType, ColumnDataTypeExtension, Decimal128, DecimalTypeExtension,
        IntervalMonthDayNano, SemanticType,
    };
    use common_catalog::consts::MITO_ENGINE;
    use common_time::interval::IntervalUnit;
    use common_time::timestamp::TimeUnit;
    use datatypes::data_type::ConcreteDataType;
    use datatypes::schema::{ColumnSchema, SchemaBuilder};
    use snafu::ResultExt;

    use super::*;
    use crate::error;
    use crate::error::ColumnDataTypeSnafu;

    #[inline]
    fn build_column_schema(
        column_name: &str,
        datatype: i32,
        nullable: bool,
    ) -> error::Result<ColumnSchema> {
        let datatype_wrapper =
            ColumnDataTypeWrapper::try_new(datatype, None).context(ColumnDataTypeSnafu)?;

        Ok(ColumnSchema::new(
            column_name,
            datatype_wrapper.into(),
            nullable,
        ))
    }

    fn build_create_expr_from_insertion(
        catalog_name: &str,
        schema_name: &str,
        table_id: Option<TableId>,
        table_name: &str,
        columns: &[Column],
        engine: &str,
    ) -> Result<CreateTableExpr> {
        let table_name = TableReference::full(catalog_name, schema_name, table_name);
        let column_exprs = ColumnExpr::from_columns(columns);
        build_create_table_expr(
            table_id,
            &table_name,
            column_exprs,
            engine,
            "Created on insertion",
        )
    }

    #[test]
    fn test_build_create_table_request() {
        let table_id = Some(10);
        let table_name = "test_metric";

        assert!(
            build_create_expr_from_insertion("", "", table_id, table_name, &[], MITO_ENGINE)
                .is_err()
        );

        let insert_batch = mock_insert_batch();

        let create_expr = build_create_expr_from_insertion(
            "",
            "",
            table_id,
            table_name,
            &insert_batch.0,
            MITO_ENGINE,
        )
        .unwrap();

        assert_eq!(table_id, create_expr.table_id.map(|x| x.id));
        assert_eq!(table_name, create_expr.table_name);
        assert_eq!("Created on insertion".to_string(), create_expr.desc);
        assert_eq!(
            vec![create_expr.column_defs[0].name.clone()],
            create_expr.primary_keys
        );

        let column_defs = create_expr.column_defs;
        assert_eq!(column_defs[5].name, create_expr.time_index);
        assert_eq!(7, column_defs.len());

        assert_eq!(
            ConcreteDataType::string_datatype(),
            ConcreteDataType::from(
                ColumnDataTypeWrapper::try_new(
                    column_defs
                        .iter()
                        .find(|c| c.name == "host")
                        .unwrap()
                        .data_type,
                    None
                )
                .unwrap()
            )
        );

        assert_eq!(
            ConcreteDataType::float64_datatype(),
            ConcreteDataType::from(
                ColumnDataTypeWrapper::try_new(
                    column_defs
                        .iter()
                        .find(|c| c.name == "cpu")
                        .unwrap()
                        .data_type,
                    None
                )
                .unwrap()
            )
        );

        assert_eq!(
            ConcreteDataType::float64_datatype(),
            ConcreteDataType::from(
                ColumnDataTypeWrapper::try_new(
                    column_defs
                        .iter()
                        .find(|c| c.name == "memory")
                        .unwrap()
                        .data_type,
                    None
                )
                .unwrap()
            )
        );

        assert_eq!(
            ConcreteDataType::time_datatype(TimeUnit::Millisecond),
            ConcreteDataType::from(
                ColumnDataTypeWrapper::try_new(
                    column_defs
                        .iter()
                        .find(|c| c.name == "time")
                        .unwrap()
                        .data_type,
                    None
                )
                .unwrap()
            )
        );

        assert_eq!(
            ConcreteDataType::interval_datatype(IntervalUnit::MonthDayNano),
            ConcreteDataType::from(
                ColumnDataTypeWrapper::try_new(
                    column_defs
                        .iter()
                        .find(|c| c.name == "interval")
                        .unwrap()
                        .data_type,
                    None
                )
                .unwrap()
            )
        );

        assert_eq!(
            ConcreteDataType::timestamp_millisecond_datatype(),
            ConcreteDataType::from(
                ColumnDataTypeWrapper::try_new(
                    column_defs
                        .iter()
                        .find(|c| c.name == "ts")
                        .unwrap()
                        .data_type,
                    None
                )
                .unwrap()
            )
        );

        let decimal_column = column_defs.iter().find(|c| c.name == "decimals").unwrap();
        assert_eq!(
            ConcreteDataType::decimal128_datatype(38, 10),
            ConcreteDataType::from(
                ColumnDataTypeWrapper::try_new(
                    decimal_column.data_type,
                    decimal_column.datatype_extension,
                )
                .unwrap()
            )
        );
    }

    #[test]
    fn test_find_new_columns() {
        let mut columns = Vec::with_capacity(1);
        let cpu_column = build_column_schema("cpu", 10, true).unwrap();
        let ts_column = build_column_schema("ts", 15, false)
            .unwrap()
            .with_time_index(true);
        columns.push(cpu_column);
        columns.push(ts_column);

        let schema = Arc::new(SchemaBuilder::try_from(columns).unwrap().build().unwrap());

        assert!(extract_new_columns(&schema, ColumnExpr::from_columns(&[]))
            .unwrap()
            .is_none());

        let insert_batch = mock_insert_batch();

        let add_columns = extract_new_columns(&schema, ColumnExpr::from_columns(&insert_batch.0))
            .unwrap()
            .unwrap();

        assert_eq!(5, add_columns.add_columns.len());
        let host_column = &add_columns.add_columns[0];
        assert_eq!(
            ConcreteDataType::string_datatype(),
            ConcreteDataType::from(
                ColumnDataTypeWrapper::try_new(
                    host_column.column_def.as_ref().unwrap().data_type,
                    None
                )
                .unwrap()
            )
        );
        assert!(host_column.add_if_not_exists);

        let memory_column = &add_columns.add_columns[1];
        assert_eq!(
            ConcreteDataType::float64_datatype(),
            ConcreteDataType::from(
                ColumnDataTypeWrapper::try_new(
                    memory_column.column_def.as_ref().unwrap().data_type,
                    None
                )
                .unwrap()
            )
        );
        assert!(host_column.add_if_not_exists);

        let time_column = &add_columns.add_columns[2];
        assert_eq!(
            ConcreteDataType::time_datatype(TimeUnit::Millisecond),
            ConcreteDataType::from(
                ColumnDataTypeWrapper::try_new(
                    time_column.column_def.as_ref().unwrap().data_type,
                    None
                )
                .unwrap()
            )
        );
        assert!(host_column.add_if_not_exists);

        let interval_column = &add_columns.add_columns[3];
        assert_eq!(
            ConcreteDataType::interval_datatype(IntervalUnit::MonthDayNano),
            ConcreteDataType::from(
                ColumnDataTypeWrapper::try_new(
                    interval_column.column_def.as_ref().unwrap().data_type,
                    None
                )
                .unwrap()
            )
        );
        assert!(host_column.add_if_not_exists);

        let decimal_column = &add_columns.add_columns[4];
        assert_eq!(
            ConcreteDataType::decimal128_datatype(38, 10),
            ConcreteDataType::from(
                ColumnDataTypeWrapper::try_new(
                    decimal_column.column_def.as_ref().unwrap().data_type,
                    decimal_column
                        .column_def
                        .as_ref()
                        .unwrap()
                        .datatype_extension
                )
                .unwrap()
            )
        );
        assert!(host_column.add_if_not_exists);
    }

    fn mock_insert_batch() -> (Vec<Column>, u32) {
        let row_count = 2;

        let host_vals = Values {
            string_values: vec!["host1".to_string(), "host2".to_string()],
            ..Default::default()
        };
        let host_column = Column {
            column_name: "host".to_string(),
            semantic_type: SemanticType::Tag as i32,
            values: Some(host_vals),
            null_mask: vec![0],
            datatype: ColumnDataType::String as i32,
            ..Default::default()
        };

        let cpu_vals = Values {
            f64_values: vec![0.31],
            ..Default::default()
        };
        let cpu_column = Column {
            column_name: "cpu".to_string(),
            semantic_type: SemanticType::Field as i32,
            values: Some(cpu_vals),
            null_mask: vec![2],
            datatype: ColumnDataType::Float64 as i32,
            ..Default::default()
        };

        let mem_vals = Values {
            f64_values: vec![0.1],
            ..Default::default()
        };
        let mem_column = Column {
            column_name: "memory".to_string(),
            semantic_type: SemanticType::Field as i32,
            values: Some(mem_vals),
            null_mask: vec![1],
            datatype: ColumnDataType::Float64 as i32,
            ..Default::default()
        };

        let time_vals = Values {
            time_millisecond_values: vec![100, 101],
            ..Default::default()
        };
        let time_column = Column {
            column_name: "time".to_string(),
            semantic_type: SemanticType::Field as i32,
            values: Some(time_vals),
            null_mask: vec![0],
            datatype: ColumnDataType::TimeMillisecond as i32,
            ..Default::default()
        };

        let interval1 = IntervalMonthDayNano {
            months: 1,
            days: 2,
            nanoseconds: 3,
        };
        let interval2 = IntervalMonthDayNano {
            months: 4,
            days: 5,
            nanoseconds: 6,
        };
        let interval_vals = Values {
            interval_month_day_nano_values: vec![interval1, interval2],
            ..Default::default()
        };
        let interval_column = Column {
            column_name: "interval".to_string(),
            semantic_type: SemanticType::Field as i32,
            values: Some(interval_vals),
            null_mask: vec![0],
            datatype: ColumnDataType::IntervalMonthDayNano as i32,
            ..Default::default()
        };

        let ts_vals = Values {
            timestamp_millisecond_values: vec![100, 101],
            ..Default::default()
        };
        let ts_column = Column {
            column_name: "ts".to_string(),
            semantic_type: SemanticType::Timestamp as i32,
            values: Some(ts_vals),
            null_mask: vec![0],
            datatype: ColumnDataType::TimestampMillisecond as i32,
            ..Default::default()
        };
        let decimal_vals = Values {
            decimal128_values: vec![Decimal128 { hi: 0, lo: 123 }, Decimal128 { hi: 0, lo: 456 }],
            ..Default::default()
        };
        let decimal_column = Column {
            column_name: "decimals".to_string(),
            semantic_type: SemanticType::Field as i32,
            values: Some(decimal_vals),
            null_mask: vec![0],
            datatype: ColumnDataType::Decimal128 as i32,
            datatype_extension: Some(ColumnDataTypeExtension {
                type_ext: Some(TypeExt::DecimalType(DecimalTypeExtension {
                    precision: 38,
                    scale: 10,
                })),
            }),
            options: None,
        };

        (
            vec![
                host_column,
                cpu_column,
                mem_column,
                time_column,
                interval_column,
                ts_column,
                decimal_column,
            ],
            row_count,
        )
    }
}