1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::sync::Arc;

use common_query::error::{self, Result};
use datatypes::arrow::compute::cast;
use datatypes::arrow::datatypes::DataType as ArrowDataType;
use datatypes::data_type::DataType;
use datatypes::prelude::ScalarVector;
use datatypes::value::Value;
use datatypes::vectors::{Float64Vector, Vector, VectorRef};
use datatypes::with_match_primitive_type_id;
use snafu::{ensure, ResultExt};

/// search the biggest number that smaller than x in xp
fn linear_search_ascending_vector(x: Value, xp: &Float64Vector) -> usize {
    for i in 0..xp.len() {
        if x < xp.get(i) {
            return i - 1;
        }
    }
    xp.len() - 1
}

/// search the biggest number that smaller than x in xp
fn binary_search_ascending_vector(key: Value, xp: &Float64Vector) -> usize {
    let mut left = 0;
    let mut right = xp.len();
    /* If len <= 4 use linear search. */
    if xp.len() <= 4 {
        return linear_search_ascending_vector(key, xp);
    }
    /* find index by bisection */
    while left < right {
        let mid = left + ((right - left) >> 1);
        if key >= xp.get(mid) {
            left = mid + 1;
        } else {
            right = mid;
        }
    }
    left - 1
}

fn concrete_type_to_primitive_vector(arg: &VectorRef) -> Result<Float64Vector> {
    with_match_primitive_type_id!(arg.data_type().logical_type_id(), |$S| {
        let tmp = arg.to_arrow_array();
        let array = cast(&tmp, &ArrowDataType::Float64).context(error::TypeCastSnafu {
            typ: ArrowDataType::Float64,
        })?;
        // Safety: array has been cast to Float64Array.
        Ok(Float64Vector::try_from_arrow_array(array).unwrap())
    },{
        unreachable!()
    })
}

/// One-dimensional linear interpolation for monotonically increasing sample points. Refers to
/// <https://github.com/numpy/numpy/blob/b101756ac02e390d605b2febcded30a1da50cc2c/numpy/core/src/multiarray/compiled_base.c#L491>
#[allow(unused)]
pub fn interp(args: &[VectorRef]) -> Result<VectorRef> {
    let mut left = None;
    let mut right = None;

    ensure!(
        args.len() >= 3,
        error::InvalidFuncArgsSnafu {
            err_msg: format!(
                "The length of the args is not enough, expect at least: {}, have: {}",
                3,
                args.len()
            ),
        }
    );

    let x = concrete_type_to_primitive_vector(&args[0])?;
    let xp = concrete_type_to_primitive_vector(&args[1])?;
    let fp = concrete_type_to_primitive_vector(&args[2])?;

    // make sure the args.len() is 3 or 5
    if args.len() > 3 {
        ensure!(
            args.len() == 5,
            error::InvalidFuncArgsSnafu {
                err_msg: format!(
                    "The length of the args is not enough, expect at least: {}, have: {}",
                    5,
                    args.len()
                ),
            }
        );

        left = concrete_type_to_primitive_vector(&args[3])
            .unwrap()
            .get_data(0);
        right = concrete_type_to_primitive_vector(&args[4])
            .unwrap()
            .get_data(0);
    }

    ensure!(
        x.len() != 0,
        error::InvalidFuncArgsSnafu {
            err_msg: "The sample x is empty",
        }
    );
    ensure!(
        xp.len() != 0,
        error::InvalidFuncArgsSnafu {
            err_msg: "The sample xp is empty",
        }
    );
    ensure!(
        fp.len() != 0,
        error::InvalidFuncArgsSnafu {
            err_msg: "The sample fp is empty",
        }
    );
    ensure!(
        xp.len() == fp.len(),
        error::InvalidFuncArgsSnafu {
            err_msg: format!(
                "The length of the len1: {} don't match the length of the len2: {}",
                xp.len(),
                fp.len()
            ),
        }
    );

    /* Get left and right fill values. */
    let left = match left {
        Some(left) => Some(left),
        _ => fp.get_data(0),
    };

    let right = match right {
        Some(right) => Some(right),
        _ => fp.get_data(fp.len() - 1),
    };

    let res;
    if xp.len() == 1 {
        let data = x
            .iter_data()
            .map(|x| {
                if Value::from(x) < xp.get(0) {
                    left
                } else if Value::from(x) > xp.get(xp.len() - 1) {
                    right
                } else {
                    fp.get_data(0)
                }
            })
            .collect::<Vec<_>>();
        res = Float64Vector::from(data);
    } else {
        let mut j = 0;
        /* only pre-calculate slopes if there are relatively few of them. */
        let mut slopes: Option<Vec<_>> = None;
        if x.len() >= xp.len() {
            let mut slopes_tmp = Vec::with_capacity(xp.len() - 1);
            for i in 0..xp.len() - 1 {
                let slope = match (
                    fp.get_data(i + 1),
                    fp.get_data(i),
                    xp.get_data(i + 1),
                    xp.get_data(i),
                ) {
                    (Some(fp1), Some(fp2), Some(xp1), Some(xp2)) => {
                        if xp1 == xp2 {
                            None
                        } else {
                            Some((fp1 - fp2) / (xp1 - xp2))
                        }
                    }
                    _ => None,
                };
                slopes_tmp.push(slope);
            }
            slopes = Some(slopes_tmp);
        }
        let data = x
            .iter_data()
            .map(|x| match x {
                Some(xi) => {
                    if Value::from(xi) > xp.get(xp.len() - 1) {
                        right
                    } else if Value::from(xi) < xp.get(0) {
                        left
                    } else {
                        j = binary_search_ascending_vector(Value::from(xi), &xp);
                        if j == xp.len() - 1 || xp.get(j) == Value::from(xi) {
                            fp.get_data(j)
                        } else {
                            let slope = match &slopes {
                                Some(slopes) => slopes[j],
                                _ => match (
                                    fp.get_data(j + 1),
                                    fp.get_data(j),
                                    xp.get_data(j + 1),
                                    xp.get_data(j),
                                ) {
                                    (Some(fp1), Some(fp2), Some(xp1), Some(xp2)) => {
                                        if xp1 == xp2 {
                                            None
                                        } else {
                                            Some((fp1 - fp2) / (xp1 - xp2))
                                        }
                                    }
                                    _ => None,
                                },
                            };

                            /* If we get nan in one direction, try the other */
                            let ans = match (slope, xp.get_data(j), fp.get_data(j)) {
                                (Some(slope), Some(xp), Some(fp)) => Some(slope * (xi - xp) + fp),
                                _ => None,
                            };

                            let ans = match ans {
                                Some(ans) => Some(ans),
                                _ => match (slope, xp.get_data(j + 1), fp.get_data(j + 1)) {
                                    (Some(slope), Some(xp), Some(fp)) => {
                                        Some(slope * (xi - xp) + fp)
                                    }
                                    _ => None,
                                },
                            };
                            let ans = match ans {
                                Some(ans) => Some(ans),
                                _ => {
                                    if fp.get_data(j) == fp.get_data(j + 1) {
                                        fp.get_data(j)
                                    } else {
                                        None
                                    }
                                }
                            };
                            ans
                        }
                    }
                }
                _ => None,
            })
            .collect::<Vec<_>>();
        res = Float64Vector::from(data);
    }
    Ok(Arc::new(res) as _)
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;

    use datatypes::vectors::{Int32Vector, Int64Vector};

    use super::*;
    #[test]
    fn test_basic_interp() {
        // x xp fp
        let x = 2.5;
        let xp = vec![1i32, 2i32, 3i32];
        let fp = vec![3i64, 2i64, 0i64];

        let args: Vec<VectorRef> = vec![
            Arc::new(Float64Vector::from_vec(vec![x])),
            Arc::new(Int32Vector::from_vec(xp.clone())),
            Arc::new(Int64Vector::from_vec(fp.clone())),
        ];
        let vector = interp(&args).unwrap();
        assert_eq!(vector.len(), 1);

        assert!(matches!(vector.get(0), Value::Float64(v) if v==1.0));

        let x = vec![0.0, 1.0, 1.5, 3.2];
        let args: Vec<VectorRef> = vec![
            Arc::new(Float64Vector::from_vec(x)),
            Arc::new(Int32Vector::from_vec(xp)),
            Arc::new(Int64Vector::from_vec(fp)),
        ];
        let vector = interp(&args).unwrap();
        assert_eq!(4, vector.len());
        let res = [3.0, 3.0, 2.5, 0.0];
        for (i, item) in res.iter().enumerate().take(vector.len()) {
            assert!(matches!(vector.get(i),Value::Float64(v) if v==*item));
        }
    }

    #[test]
    fn test_left_right() {
        let x = vec![0.0, 1.0, 1.5, 2.0, 3.0, 4.0];
        let xp = vec![1i32, 2i32, 3i32];
        let fp = vec![3i64, 2i64, 0i64];
        let left = vec![-1];
        let right = vec![2];

        let expect = [-1.0, 3.0, 2.5, 2.0, 0.0, 2.0];

        let args: Vec<VectorRef> = vec![
            Arc::new(Float64Vector::from_vec(x)),
            Arc::new(Int32Vector::from_vec(xp)),
            Arc::new(Int64Vector::from_vec(fp)),
            Arc::new(Int32Vector::from_vec(left)),
            Arc::new(Int32Vector::from_vec(right)),
        ];
        let vector = interp(&args).unwrap();

        for (i, item) in expect.iter().enumerate().take(vector.len()) {
            assert!(matches!(vector.get(i),Value::Float64(v) if v==*item));
        }
    }

    #[test]
    fn test_scalar_interpolation_point() {
        // x=0 output:0
        let x = vec![0];
        let xp = vec![0, 1, 5];
        let fp = vec![0, 1, 5];
        let args: Vec<VectorRef> = vec![
            Arc::new(Int64Vector::from_vec(x.clone())),
            Arc::new(Int64Vector::from_vec(xp.clone())),
            Arc::new(Int64Vector::from_vec(fp.clone())),
        ];
        let vector = interp(&args).unwrap();
        assert!(matches!(vector.get(0), Value::Float64(v) if v==x[0] as f64));

        // x=0.3 output:0.3
        let x = vec![0.3];
        let args: Vec<VectorRef> = vec![
            Arc::new(Float64Vector::from_vec(x.clone())),
            Arc::new(Int64Vector::from_vec(xp.clone())),
            Arc::new(Int64Vector::from_vec(fp.clone())),
        ];
        let vector = interp(&args).unwrap();
        assert!(matches!(vector.get(0), Value::Float64(v) if v == x[0]));

        // x=None output:Null
        let input = vec![None, Some(0.0), Some(0.3)];
        let x = Float64Vector::from(input);
        let args: Vec<VectorRef> = vec![
            Arc::new(x),
            Arc::new(Int64Vector::from_vec(xp)),
            Arc::new(Int64Vector::from_vec(fp)),
        ];
        let vector = interp(&args).unwrap();
        assert!(matches!(vector.get(0), Value::Null));
    }
}