common_function/scalars/ip/
range.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::net::{Ipv4Addr, Ipv6Addr};
use std::str::FromStr;

use common_query::error::{InvalidFuncArgsSnafu, Result};
use common_query::prelude::{Signature, TypeSignature};
use datafusion::logical_expr::Volatility;
use datatypes::prelude::{ConcreteDataType, Value};
use datatypes::scalars::ScalarVectorBuilder;
use datatypes::vectors::{BooleanVectorBuilder, MutableVector, VectorRef};
use derive_more::Display;
use snafu::ensure;

use crate::function::{Function, FunctionContext};

/// Function that checks if an IPv4 address is within a specified CIDR range.
///
/// Both the IP address and the CIDR range are provided as strings.
/// Returns boolean result indicating whether the IP is in the range.
///
/// Examples:
/// - ipv4_in_range('192.168.1.5', '192.168.1.0/24') -> true
/// - ipv4_in_range('192.168.2.1', '192.168.1.0/24') -> false
/// - ipv4_in_range('10.0.0.1', '10.0.0.0/8') -> true
#[derive(Clone, Debug, Default, Display)]
#[display("{}", self.name())]
pub struct Ipv4InRange;

impl Function for Ipv4InRange {
    fn name(&self) -> &str {
        "ipv4_in_range"
    }

    fn return_type(&self, _input_types: &[ConcreteDataType]) -> Result<ConcreteDataType> {
        Ok(ConcreteDataType::boolean_datatype())
    }

    fn signature(&self) -> Signature {
        Signature::new(
            TypeSignature::Exact(vec![
                ConcreteDataType::string_datatype(),
                ConcreteDataType::string_datatype(),
            ]),
            Volatility::Immutable,
        )
    }

    fn eval(&self, _func_ctx: &FunctionContext, columns: &[VectorRef]) -> Result<VectorRef> {
        ensure!(
            columns.len() == 2,
            InvalidFuncArgsSnafu {
                err_msg: format!("Expected 2 arguments, got {}", columns.len())
            }
        );

        let ip_vec = &columns[0];
        let range_vec = &columns[1];
        let size = ip_vec.len();

        ensure!(
            range_vec.len() == size,
            InvalidFuncArgsSnafu {
                err_msg: "IP addresses and CIDR ranges must have the same number of rows"
                    .to_string()
            }
        );

        let mut results = BooleanVectorBuilder::with_capacity(size);

        for i in 0..size {
            let ip = ip_vec.get(i);
            let range = range_vec.get(i);

            let in_range = match (ip, range) {
                (Value::String(ip_str), Value::String(range_str)) => {
                    let ip_str = ip_str.as_utf8().trim();
                    let range_str = range_str.as_utf8().trim();

                    if ip_str.is_empty() || range_str.is_empty() {
                        return InvalidFuncArgsSnafu {
                            err_msg: "IP address and CIDR range cannot be empty".to_string(),
                        }
                        .fail();
                    }

                    // Parse the IP address
                    let ip_addr = Ipv4Addr::from_str(ip_str).map_err(|_| {
                        InvalidFuncArgsSnafu {
                            err_msg: format!("Invalid IPv4 address: {}", ip_str),
                        }
                        .build()
                    })?;

                    // Parse the CIDR range
                    let (cidr_ip, cidr_prefix) = parse_ipv4_cidr(range_str)?;

                    // Check if the IP is in the CIDR range
                    is_ipv4_in_range(&ip_addr, &cidr_ip, cidr_prefix)
                }
                _ => None,
            };

            results.push(in_range);
        }

        Ok(results.to_vector())
    }
}

/// Function that checks if an IPv6 address is within a specified CIDR range.
///
/// Both the IP address and the CIDR range are provided as strings.
/// Returns boolean result indicating whether the IP is in the range.
///
/// Examples:
/// - ipv6_in_range('2001:db8::1', '2001:db8::/32') -> true
/// - ipv6_in_range('2001:db8:1::', '2001:db8::/32') -> true
/// - ipv6_in_range('2001:db9::1', '2001:db8::/32') -> false
/// - ipv6_in_range('::1', '::1/128') -> true
#[derive(Clone, Debug, Default, Display)]
#[display("{}", self.name())]
pub struct Ipv6InRange;

impl Function for Ipv6InRange {
    fn name(&self) -> &str {
        "ipv6_in_range"
    }

    fn return_type(&self, _input_types: &[ConcreteDataType]) -> Result<ConcreteDataType> {
        Ok(ConcreteDataType::boolean_datatype())
    }

    fn signature(&self) -> Signature {
        Signature::new(
            TypeSignature::Exact(vec![
                ConcreteDataType::string_datatype(),
                ConcreteDataType::string_datatype(),
            ]),
            Volatility::Immutable,
        )
    }

    fn eval(&self, _func_ctx: &FunctionContext, columns: &[VectorRef]) -> Result<VectorRef> {
        ensure!(
            columns.len() == 2,
            InvalidFuncArgsSnafu {
                err_msg: format!("Expected 2 arguments, got {}", columns.len())
            }
        );

        let ip_vec = &columns[0];
        let range_vec = &columns[1];
        let size = ip_vec.len();

        ensure!(
            range_vec.len() == size,
            InvalidFuncArgsSnafu {
                err_msg: "IP addresses and CIDR ranges must have the same number of rows"
                    .to_string()
            }
        );

        let mut results = BooleanVectorBuilder::with_capacity(size);

        for i in 0..size {
            let ip = ip_vec.get(i);
            let range = range_vec.get(i);

            let in_range = match (ip, range) {
                (Value::String(ip_str), Value::String(range_str)) => {
                    let ip_str = ip_str.as_utf8().trim();
                    let range_str = range_str.as_utf8().trim();

                    if ip_str.is_empty() || range_str.is_empty() {
                        return InvalidFuncArgsSnafu {
                            err_msg: "IP address and CIDR range cannot be empty".to_string(),
                        }
                        .fail();
                    }

                    // Parse the IP address
                    let ip_addr = Ipv6Addr::from_str(ip_str).map_err(|_| {
                        InvalidFuncArgsSnafu {
                            err_msg: format!("Invalid IPv6 address: {}", ip_str),
                        }
                        .build()
                    })?;

                    // Parse the CIDR range
                    let (cidr_ip, cidr_prefix) = parse_ipv6_cidr(range_str)?;

                    // Check if the IP is in the CIDR range
                    is_ipv6_in_range(&ip_addr, &cidr_ip, cidr_prefix)
                }
                _ => None,
            };

            results.push(in_range);
        }

        Ok(results.to_vector())
    }
}

// Helper functions

fn parse_ipv4_cidr(cidr: &str) -> Result<(Ipv4Addr, u8)> {
    // Split the CIDR string into IP and prefix parts
    let parts: Vec<&str> = cidr.split('/').collect();
    ensure!(
        parts.len() == 2,
        InvalidFuncArgsSnafu {
            err_msg: format!("Invalid CIDR notation: {}", cidr),
        }
    );

    // Parse the IP address part
    let ip = Ipv4Addr::from_str(parts[0]).map_err(|_| {
        InvalidFuncArgsSnafu {
            err_msg: format!("Invalid IPv4 address in CIDR: {}", parts[0]),
        }
        .build()
    })?;

    // Parse the prefix length
    let prefix = parts[1].parse::<u8>().map_err(|_| {
        InvalidFuncArgsSnafu {
            err_msg: format!("Invalid prefix length: {}", parts[1]),
        }
        .build()
    })?;

    ensure!(
        prefix <= 32,
        InvalidFuncArgsSnafu {
            err_msg: format!("IPv4 prefix length must be <= 32, got {}", prefix),
        }
    );

    Ok((ip, prefix))
}

fn parse_ipv6_cidr(cidr: &str) -> Result<(Ipv6Addr, u8)> {
    // Split the CIDR string into IP and prefix parts
    let parts: Vec<&str> = cidr.split('/').collect();
    ensure!(
        parts.len() == 2,
        InvalidFuncArgsSnafu {
            err_msg: format!("Invalid CIDR notation: {}", cidr),
        }
    );

    // Parse the IP address part
    let ip = Ipv6Addr::from_str(parts[0]).map_err(|_| {
        InvalidFuncArgsSnafu {
            err_msg: format!("Invalid IPv6 address in CIDR: {}", parts[0]),
        }
        .build()
    })?;

    // Parse the prefix length
    let prefix = parts[1].parse::<u8>().map_err(|_| {
        InvalidFuncArgsSnafu {
            err_msg: format!("Invalid prefix length: {}", parts[1]),
        }
        .build()
    })?;

    ensure!(
        prefix <= 128,
        InvalidFuncArgsSnafu {
            err_msg: format!("IPv6 prefix length must be <= 128, got {}", prefix),
        }
    );

    Ok((ip, prefix))
}

fn is_ipv4_in_range(ip: &Ipv4Addr, cidr_base: &Ipv4Addr, prefix_len: u8) -> Option<bool> {
    // Convert both IPs to integers
    let ip_int = u32::from(*ip);
    let cidr_int = u32::from(*cidr_base);

    // Calculate the mask from the prefix length
    let mask = if prefix_len == 0 {
        0
    } else {
        u32::MAX << (32 - prefix_len)
    };

    // Apply the mask to both IPs and see if they match
    let ip_network = ip_int & mask;
    let cidr_network = cidr_int & mask;

    Some(ip_network == cidr_network)
}

fn is_ipv6_in_range(ip: &Ipv6Addr, cidr_base: &Ipv6Addr, prefix_len: u8) -> Option<bool> {
    // Get the octets (16 bytes) of both IPs
    let ip_octets = ip.octets();
    let cidr_octets = cidr_base.octets();

    // Calculate how many full bytes to compare
    let full_bytes = (prefix_len / 8) as usize;

    // First, check full bytes for equality
    for i in 0..full_bytes {
        if ip_octets[i] != cidr_octets[i] {
            return Some(false);
        }
    }

    // If there's a partial byte to check
    if prefix_len % 8 != 0 && full_bytes < 16 {
        let bits_to_check = prefix_len % 8;
        let mask = 0xFF_u8 << (8 - bits_to_check);

        if (ip_octets[full_bytes] & mask) != (cidr_octets[full_bytes] & mask) {
            return Some(false);
        }
    }

    // If we got here, everything matched
    Some(true)
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;

    use datatypes::scalars::ScalarVector;
    use datatypes::vectors::{BooleanVector, StringVector};

    use super::*;

    #[test]
    fn test_ipv4_in_range() {
        let func = Ipv4InRange;
        let ctx = FunctionContext::default();

        // Test IPs
        let ip_values = vec![
            "192.168.1.5",
            "192.168.2.1",
            "10.0.0.1",
            "10.1.0.1",
            "172.16.0.1",
        ];

        // Corresponding CIDR ranges
        let cidr_values = vec![
            "192.168.1.0/24",
            "192.168.1.0/24",
            "10.0.0.0/8",
            "10.0.0.0/8",
            "172.16.0.0/16",
        ];

        let ip_input = Arc::new(StringVector::from_slice(&ip_values)) as VectorRef;
        let cidr_input = Arc::new(StringVector::from_slice(&cidr_values)) as VectorRef;

        let result = func.eval(&ctx, &[ip_input, cidr_input]).unwrap();
        let result = result.as_any().downcast_ref::<BooleanVector>().unwrap();

        // Expected results
        assert!(result.get_data(0).unwrap()); // 192.168.1.5 is in 192.168.1.0/24
        assert!(!result.get_data(1).unwrap()); // 192.168.2.1 is not in 192.168.1.0/24
        assert!(result.get_data(2).unwrap()); // 10.0.0.1 is in 10.0.0.0/8
        assert!(result.get_data(3).unwrap()); // 10.1.0.1 is in 10.0.0.0/8
        assert!(result.get_data(4).unwrap()); // 172.16.0.1 is in 172.16.0.0/16
    }

    #[test]
    fn test_ipv6_in_range() {
        let func = Ipv6InRange;
        let ctx = FunctionContext::default();

        // Test IPs
        let ip_values = vec![
            "2001:db8::1",
            "2001:db8:1::",
            "2001:db9::1",
            "::1",
            "fe80::1",
        ];

        // Corresponding CIDR ranges
        let cidr_values = vec![
            "2001:db8::/32",
            "2001:db8::/32",
            "2001:db8::/32",
            "::1/128",
            "fe80::/16",
        ];

        let ip_input = Arc::new(StringVector::from_slice(&ip_values)) as VectorRef;
        let cidr_input = Arc::new(StringVector::from_slice(&cidr_values)) as VectorRef;

        let result = func.eval(&ctx, &[ip_input, cidr_input]).unwrap();
        let result = result.as_any().downcast_ref::<BooleanVector>().unwrap();

        // Expected results
        assert!(result.get_data(0).unwrap()); // 2001:db8::1 is in 2001:db8::/32
        assert!(result.get_data(1).unwrap()); // 2001:db8:1:: is in 2001:db8::/32
        assert!(!result.get_data(2).unwrap()); // 2001:db9::1 is not in 2001:db8::/32
        assert!(result.get_data(3).unwrap()); // ::1 is in ::1/128
        assert!(result.get_data(4).unwrap()); // fe80::1 is in fe80::/16
    }

    #[test]
    fn test_invalid_inputs() {
        let ipv4_func = Ipv4InRange;
        let ipv6_func = Ipv6InRange;
        let ctx = FunctionContext::default();

        // Invalid IPv4 address
        let invalid_ip_values = vec!["not-an-ip", "192.168.1.300"];
        let cidr_values = vec!["192.168.1.0/24", "192.168.1.0/24"];

        let invalid_ip_input = Arc::new(StringVector::from_slice(&invalid_ip_values)) as VectorRef;
        let cidr_input = Arc::new(StringVector::from_slice(&cidr_values)) as VectorRef;

        let result = ipv4_func.eval(&ctx, &[invalid_ip_input, cidr_input]);
        assert!(result.is_err());

        // Invalid CIDR notation
        let ip_values = vec!["192.168.1.1", "2001:db8::1"];
        let invalid_cidr_values = vec!["192.168.1.0", "2001:db8::/129"];

        let ip_input = Arc::new(StringVector::from_slice(&ip_values)) as VectorRef;
        let invalid_cidr_input =
            Arc::new(StringVector::from_slice(&invalid_cidr_values)) as VectorRef;

        let ipv4_result = ipv4_func.eval(&ctx, &[ip_input.clone(), invalid_cidr_input.clone()]);
        let ipv6_result = ipv6_func.eval(&ctx, &[ip_input, invalid_cidr_input]);

        assert!(ipv4_result.is_err());
        assert!(ipv6_result.is_err());
    }

    #[test]
    fn test_edge_cases() {
        let ipv4_func = Ipv4InRange;
        let ctx = FunctionContext::default();

        // Edge cases like prefix length 0 (matches everything) and 32 (exact match)
        let ip_values = vec!["8.8.8.8", "192.168.1.1", "192.168.1.1"];
        let cidr_values = vec!["0.0.0.0/0", "192.168.1.1/32", "192.168.1.0/32"];

        let ip_input = Arc::new(StringVector::from_slice(&ip_values)) as VectorRef;
        let cidr_input = Arc::new(StringVector::from_slice(&cidr_values)) as VectorRef;

        let result = ipv4_func.eval(&ctx, &[ip_input, cidr_input]).unwrap();
        let result = result.as_any().downcast_ref::<BooleanVector>().unwrap();

        assert!(result.get_data(0).unwrap()); // 8.8.8.8 is in 0.0.0.0/0 (matches everything)
        assert!(result.get_data(1).unwrap()); // 192.168.1.1 is in 192.168.1.1/32 (exact match)
        assert!(!result.get_data(2).unwrap()); // 192.168.1.1 is not in 192.168.1.0/32 (no match)
    }
}