common_function/scalars/ip/
ipv6.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::net::{Ipv4Addr, Ipv6Addr};
use std::str::FromStr;

use common_query::error::{InvalidFuncArgsSnafu, Result};
use common_query::prelude::{Signature, TypeSignature};
use datafusion::logical_expr::Volatility;
use datatypes::prelude::{ConcreteDataType, Value};
use datatypes::scalars::ScalarVectorBuilder;
use datatypes::vectors::{BinaryVectorBuilder, MutableVector, StringVectorBuilder, VectorRef};
use derive_more::Display;
use snafu::ensure;

use crate::function::{Function, FunctionContext};

/// Function that converts a hex string representation of an IPv6 address to a formatted string.
///
/// For example:
/// - "20010DB8000000000000000000000001" returns "2001:db8::1"
/// - "00000000000000000000FFFFC0A80001" returns "::ffff:192.168.0.1"
#[derive(Clone, Debug, Default, Display)]
#[display("{}", self.name())]
pub struct Ipv6NumToString;

impl Function for Ipv6NumToString {
    fn name(&self) -> &str {
        "ipv6_num_to_string"
    }

    fn return_type(&self, _input_types: &[ConcreteDataType]) -> Result<ConcreteDataType> {
        Ok(ConcreteDataType::string_datatype())
    }

    fn signature(&self) -> Signature {
        Signature::new(
            TypeSignature::Exact(vec![ConcreteDataType::string_datatype()]),
            Volatility::Immutable,
        )
    }

    fn eval(&self, _func_ctx: &FunctionContext, columns: &[VectorRef]) -> Result<VectorRef> {
        ensure!(
            columns.len() == 1,
            InvalidFuncArgsSnafu {
                err_msg: format!("Expected 1 argument, got {}", columns.len())
            }
        );

        let hex_vec = &columns[0];
        let size = hex_vec.len();
        let mut results = StringVectorBuilder::with_capacity(size);

        for i in 0..size {
            let hex_str = hex_vec.get(i);
            let ip_str = match hex_str {
                Value::String(s) => {
                    let hex_str = s.as_utf8().to_lowercase();

                    // Validate and convert hex string to bytes
                    let bytes = if hex_str.len() == 32 {
                        let mut bytes = [0u8; 16];
                        for i in 0..16 {
                            let byte_str = &hex_str[i * 2..i * 2 + 2];
                            bytes[i] = u8::from_str_radix(byte_str, 16).map_err(|_| {
                                InvalidFuncArgsSnafu {
                                    err_msg: format!("Invalid hex characters in '{}'", byte_str),
                                }
                                .build()
                            })?;
                        }
                        bytes
                    } else {
                        return InvalidFuncArgsSnafu {
                            err_msg: format!("Expected 32 hex characters, got {}", hex_str.len()),
                        }
                        .fail();
                    };

                    // Convert bytes to IPv6 address
                    let addr = Ipv6Addr::from(bytes);

                    // Special handling for IPv6-mapped IPv4 addresses
                    if let Some(ipv4) = addr.to_ipv4() {
                        if addr.octets()[0..10].iter().all(|&b| b == 0)
                            && addr.octets()[10] == 0xFF
                            && addr.octets()[11] == 0xFF
                        {
                            Some(format!("::ffff:{}", ipv4))
                        } else {
                            Some(addr.to_string())
                        }
                    } else {
                        Some(addr.to_string())
                    }
                }
                _ => None,
            };

            results.push(ip_str.as_deref());
        }

        Ok(results.to_vector())
    }
}

/// Function that converts a string representation of an IPv6 address to its binary representation.
///
/// For example:
/// - "2001:db8::1" returns its binary representation
/// - If the input string contains a valid IPv4 address, returns its IPv6 equivalent
/// - HEX can be uppercase or lowercase
/// - Invalid IPv6 format throws an exception
#[derive(Clone, Debug, Default, Display)]
#[display("{}", self.name())]
pub struct Ipv6StringToNum;

impl Function for Ipv6StringToNum {
    fn name(&self) -> &str {
        "ipv6_string_to_num"
    }

    fn return_type(&self, _input_types: &[ConcreteDataType]) -> Result<ConcreteDataType> {
        Ok(ConcreteDataType::binary_datatype())
    }

    fn signature(&self) -> Signature {
        Signature::new(
            TypeSignature::Exact(vec![ConcreteDataType::string_datatype()]),
            Volatility::Immutable,
        )
    }

    fn eval(&self, _func_ctx: &FunctionContext, columns: &[VectorRef]) -> Result<VectorRef> {
        ensure!(
            columns.len() == 1,
            InvalidFuncArgsSnafu {
                err_msg: format!("Expected 1 argument, got {}", columns.len())
            }
        );

        let ip_vec = &columns[0];
        let size = ip_vec.len();
        let mut results = BinaryVectorBuilder::with_capacity(size);

        for i in 0..size {
            let ip_str = ip_vec.get(i);
            let ip_binary = match ip_str {
                Value::String(s) => {
                    let addr_str = s.as_utf8();

                    let addr = if let Ok(ipv6) = Ipv6Addr::from_str(addr_str) {
                        // Direct IPv6 address
                        ipv6
                    } else if let Ok(ipv4) = Ipv4Addr::from_str(addr_str) {
                        // IPv4 address to be converted to IPv6
                        ipv4.to_ipv6_mapped()
                    } else {
                        // Invalid format
                        return InvalidFuncArgsSnafu {
                            err_msg: format!("Invalid IPv6 address format: {}", addr_str),
                        }
                        .fail();
                    };

                    // Convert IPv6 address to binary (16 bytes)
                    let octets = addr.octets();
                    Some(octets.to_vec())
                }
                _ => None,
            };

            results.push(ip_binary.as_deref());
        }

        Ok(results.to_vector())
    }
}

#[cfg(test)]
mod tests {
    use std::fmt::Write;
    use std::sync::Arc;

    use datatypes::scalars::ScalarVector;
    use datatypes::vectors::{BinaryVector, StringVector, Vector};

    use super::*;

    #[test]
    fn test_ipv6_num_to_string() {
        let func = Ipv6NumToString;
        let ctx = FunctionContext::default();

        // Hex string for "2001:db8::1"
        let hex_str1 = "20010db8000000000000000000000001";

        // Hex string for IPv4-mapped IPv6 address "::ffff:192.168.0.1"
        let hex_str2 = "00000000000000000000ffffc0a80001";

        let values = vec![hex_str1, hex_str2];
        let input = Arc::new(StringVector::from_slice(&values)) as VectorRef;

        let result = func.eval(&ctx, &[input]).unwrap();
        let result = result.as_any().downcast_ref::<StringVector>().unwrap();

        assert_eq!(result.get_data(0).unwrap(), "2001:db8::1");
        assert_eq!(result.get_data(1).unwrap(), "::ffff:192.168.0.1");
    }

    #[test]
    fn test_ipv6_num_to_string_uppercase() {
        let func = Ipv6NumToString;
        let ctx = FunctionContext::default();

        // Uppercase hex string for "2001:db8::1"
        let hex_str = "20010DB8000000000000000000000001";

        let values = vec![hex_str];
        let input = Arc::new(StringVector::from_slice(&values)) as VectorRef;

        let result = func.eval(&ctx, &[input]).unwrap();
        let result = result.as_any().downcast_ref::<StringVector>().unwrap();

        assert_eq!(result.get_data(0).unwrap(), "2001:db8::1");
    }

    #[test]
    fn test_ipv6_num_to_string_error() {
        let func = Ipv6NumToString;
        let ctx = FunctionContext::default();

        // Invalid hex string - wrong length
        let hex_str = "20010db8";

        let values = vec![hex_str];
        let input = Arc::new(StringVector::from_slice(&values)) as VectorRef;

        // Should return an error
        let result = func.eval(&ctx, &[input]);
        assert!(result.is_err());

        // Check that the error message contains expected text
        let error_msg = result.unwrap_err().to_string();
        assert!(error_msg.contains("Expected 32 hex characters"));
    }

    #[test]
    fn test_ipv6_string_to_num() {
        let func = Ipv6StringToNum;
        let ctx = FunctionContext::default();

        let values = vec!["2001:db8::1", "::ffff:192.168.0.1", "192.168.0.1"];
        let input = Arc::new(StringVector::from_slice(&values)) as VectorRef;

        let result = func.eval(&ctx, &[input]).unwrap();
        let result = result.as_any().downcast_ref::<BinaryVector>().unwrap();

        // Expected binary for "2001:db8::1"
        let expected_1 = [
            0x20, 0x01, 0x0d, 0xb8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01,
        ];

        // Expected binary for "::ffff:192.168.0.1" or "192.168.0.1" (IPv4-mapped)
        let expected_2 = [
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, 0xC0, 0xA8, 0, 0x01,
        ];

        assert_eq!(result.get_data(0).unwrap(), &expected_1);
        assert_eq!(result.get_data(1).unwrap(), &expected_2);
        assert_eq!(result.get_data(2).unwrap(), &expected_2);
    }

    #[test]
    fn test_ipv6_conversions_roundtrip() {
        let to_num = Ipv6StringToNum;
        let to_string = Ipv6NumToString;
        let ctx = FunctionContext::default();

        // Test data
        let values = vec!["2001:db8::1", "::ffff:192.168.0.1"];
        let input = Arc::new(StringVector::from_slice(&values)) as VectorRef;

        // Convert IPv6 addresses to binary
        let binary_result = to_num.eval(&ctx, &[input.clone()]).unwrap();

        // Convert binary to hex string representation (for ipv6_num_to_string)
        let mut hex_strings = Vec::new();
        let binary_vector = binary_result
            .as_any()
            .downcast_ref::<BinaryVector>()
            .unwrap();

        for i in 0..binary_vector.len() {
            let bytes = binary_vector.get_data(i).unwrap();
            let hex = bytes.iter().fold(String::new(), |mut acc, b| {
                write!(&mut acc, "{:02x}", b).unwrap();
                acc
            });
            hex_strings.push(hex);
        }

        let hex_str_refs: Vec<&str> = hex_strings.iter().map(|s| s.as_str()).collect();
        let hex_input = Arc::new(StringVector::from_slice(&hex_str_refs)) as VectorRef;

        // Now convert hex to formatted string
        let string_result = to_string.eval(&ctx, &[hex_input]).unwrap();
        let str_result = string_result
            .as_any()
            .downcast_ref::<StringVector>()
            .unwrap();

        // Compare with original input
        assert_eq!(str_result.get_data(0).unwrap(), values[0]);
        assert_eq!(str_result.get_data(1).unwrap(), values[1]);
    }

    #[test]
    fn test_ipv6_conversions_hex_roundtrip() {
        // Create a new test to verify that the string output from ipv6_num_to_string
        // can be converted back using ipv6_string_to_num
        let to_string = Ipv6NumToString;
        let to_binary = Ipv6StringToNum;
        let ctx = FunctionContext::default();

        // Hex representation of IPv6 addresses
        let hex_values = vec![
            "20010db8000000000000000000000001",
            "00000000000000000000ffffc0a80001",
        ];
        let hex_input = Arc::new(StringVector::from_slice(&hex_values)) as VectorRef;

        // Convert hex to string representation
        let string_result = to_string.eval(&ctx, &[hex_input]).unwrap();

        // Then convert string representation back to binary
        let binary_result = to_binary.eval(&ctx, &[string_result]).unwrap();
        let bin_result = binary_result
            .as_any()
            .downcast_ref::<BinaryVector>()
            .unwrap();

        // Expected binary values
        let expected_bin1 = [
            0x20, 0x01, 0x0d, 0xb8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01,
        ];
        let expected_bin2 = [
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, 0xC0, 0xA8, 0, 0x01,
        ];

        assert_eq!(bin_result.get_data(0).unwrap(), &expected_bin1);
        assert_eq!(bin_result.get_data(1).unwrap(), &expected_bin2);
    }
}