common_function/scalars/geo/
encoding.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::sync::Arc;

use common_error::ext::{BoxedError, PlainError};
use common_error::status_code::StatusCode;
use common_macro::{as_aggr_func_creator, AggrFuncTypeStore};
use common_query::error::{self, InvalidInputStateSnafu, Result};
use common_query::logical_plan::accumulator::AggrFuncTypeStore;
use common_query::logical_plan::{Accumulator, AggregateFunctionCreator};
use common_query::prelude::AccumulatorCreatorFunction;
use common_time::Timestamp;
use datatypes::prelude::ConcreteDataType;
use datatypes::value::{ListValue, Value};
use datatypes::vectors::VectorRef;
use snafu::{ensure, ResultExt};

use super::helpers::{ensure_columns_len, ensure_columns_n};

/// Accumulator of lat, lng, timestamp tuples
#[derive(Debug)]
pub struct JsonPathAccumulator {
    timestamp_type: ConcreteDataType,
    lat: Vec<Option<f64>>,
    lng: Vec<Option<f64>>,
    timestamp: Vec<Option<Timestamp>>,
}

impl JsonPathAccumulator {
    fn new(timestamp_type: ConcreteDataType) -> Self {
        Self {
            lat: Vec::default(),
            lng: Vec::default(),
            timestamp: Vec::default(),
            timestamp_type,
        }
    }
}

impl Accumulator for JsonPathAccumulator {
    fn state(&self) -> Result<Vec<Value>> {
        Ok(vec![
            Value::List(ListValue::new(
                self.lat.iter().map(|i| Value::from(*i)).collect(),
                ConcreteDataType::float64_datatype(),
            )),
            Value::List(ListValue::new(
                self.lng.iter().map(|i| Value::from(*i)).collect(),
                ConcreteDataType::float64_datatype(),
            )),
            Value::List(ListValue::new(
                self.timestamp.iter().map(|i| Value::from(*i)).collect(),
                self.timestamp_type.clone(),
            )),
        ])
    }

    fn update_batch(&mut self, columns: &[VectorRef]) -> Result<()> {
        // update batch as in datafusion just provides the accumulator original
        //  input.
        //
        // columns is vec of [`lat`, `lng`, `timestamp`]
        // where
        // - `lat` is a vector of `Value::Float64` or similar type. Each item in
        //  the vector is a row in given dataset.
        // - so on so forth for `lng` and `timestamp`
        ensure_columns_n!(columns, 3);

        let lat = &columns[0];
        let lng = &columns[1];
        let ts = &columns[2];

        let size = lat.len();

        for idx in 0..size {
            self.lat.push(lat.get(idx).as_f64_lossy());
            self.lng.push(lng.get(idx).as_f64_lossy());
            self.timestamp.push(ts.get(idx).as_timestamp());
        }

        Ok(())
    }

    fn merge_batch(&mut self, states: &[VectorRef]) -> Result<()> {
        // merge batch as in datafusion gives state accumulated from the data
        //  returned from child accumulators' state() call
        // In our particular implementation, the data structure is like
        //
        // states is vec of [`lat`, `lng`, `timestamp`]
        // where
        // - `lat` is a vector of `Value::List`. Each item in the list is all
        //  coordinates from a child accumulator.
        // - so on so forth for `lng` and `timestamp`

        ensure_columns_n!(states, 3);

        let lat_lists = &states[0];
        let lng_lists = &states[1];
        let ts_lists = &states[2];

        let len = lat_lists.len();

        for idx in 0..len {
            if let Some(lat_list) = lat_lists
                .get(idx)
                .as_list()
                .map_err(BoxedError::new)
                .context(error::ExecuteSnafu)?
            {
                for v in lat_list.items() {
                    self.lat.push(v.as_f64_lossy());
                }
            }

            if let Some(lng_list) = lng_lists
                .get(idx)
                .as_list()
                .map_err(BoxedError::new)
                .context(error::ExecuteSnafu)?
            {
                for v in lng_list.items() {
                    self.lng.push(v.as_f64_lossy());
                }
            }

            if let Some(ts_list) = ts_lists
                .get(idx)
                .as_list()
                .map_err(BoxedError::new)
                .context(error::ExecuteSnafu)?
            {
                for v in ts_list.items() {
                    self.timestamp.push(v.as_timestamp());
                }
            }
        }

        Ok(())
    }

    fn evaluate(&self) -> Result<Value> {
        let mut work_vec: Vec<(&Option<f64>, &Option<f64>, &Option<Timestamp>)> = self
            .lat
            .iter()
            .zip(self.lng.iter())
            .zip(self.timestamp.iter())
            .map(|((a, b), c)| (a, b, c))
            .collect();

        // sort by timestamp, we treat null timestamp as 0
        work_vec.sort_unstable_by_key(|tuple| tuple.2.unwrap_or_else(|| Timestamp::new_second(0)));

        let result = serde_json::to_string(
            &work_vec
                .into_iter()
                // note that we transform to lng,lat for geojson compatibility
                .map(|(lat, lng, _)| vec![lng, lat])
                .collect::<Vec<Vec<&Option<f64>>>>(),
        )
        .map_err(|e| {
            BoxedError::new(PlainError::new(
                format!("Serialization failure: {}", e),
                StatusCode::EngineExecuteQuery,
            ))
        })
        .context(error::ExecuteSnafu)?;

        Ok(Value::String(result.into()))
    }
}

/// This function accept rows of lat, lng and timestamp, sort with timestamp and
/// encoding them into a geojson-like path.
///
/// Example:
///
/// ```sql
/// SELECT json_encode_path(lat, lon, timestamp) FROM table [group by ...];
/// ```
///
#[as_aggr_func_creator]
#[derive(Debug, Default, AggrFuncTypeStore)]
pub struct JsonPathEncodeFunctionCreator {}

impl AggregateFunctionCreator for JsonPathEncodeFunctionCreator {
    fn creator(&self) -> AccumulatorCreatorFunction {
        let creator: AccumulatorCreatorFunction = Arc::new(move |types: &[ConcreteDataType]| {
            let ts_type = types[2].clone();
            Ok(Box::new(JsonPathAccumulator::new(ts_type)))
        });

        creator
    }

    fn output_type(&self) -> Result<ConcreteDataType> {
        Ok(ConcreteDataType::string_datatype())
    }

    fn state_types(&self) -> Result<Vec<ConcreteDataType>> {
        let input_types = self.input_types()?;
        ensure!(input_types.len() == 3, InvalidInputStateSnafu);

        let timestamp_type = input_types[2].clone();

        Ok(vec![
            ConcreteDataType::list_datatype(ConcreteDataType::float64_datatype()),
            ConcreteDataType::list_datatype(ConcreteDataType::float64_datatype()),
            ConcreteDataType::list_datatype(timestamp_type),
        ])
    }
}