1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::cmp::Reverse;
use std::collections::BinaryHeap;
use std::sync::Arc;

use common_macro::{as_aggr_func_creator, AggrFuncTypeStore};
use common_query::error::{
    self, BadAccumulatorImplSnafu, CreateAccumulatorSnafu, DowncastVectorSnafu,
    FromScalarValueSnafu, InvalidInputColSnafu, Result,
};
use common_query::logical_plan::{Accumulator, AggregateFunctionCreator};
use common_query::prelude::*;
use datatypes::prelude::*;
use datatypes::types::OrdPrimitive;
use datatypes::value::{ListValue, OrderedFloat};
use datatypes::vectors::{ConstantVector, Float64Vector, Helper, ListVector};
use datatypes::with_match_primitive_type_id;
use num::NumCast;
use snafu::{ensure, OptionExt, ResultExt};

// https://numpy.org/doc/stable/reference/generated/numpy.percentile.html?highlight=percentile#numpy.percentile
// if the p is 50,then the Percentile become median
// we use two heap great and not_greater
// the not_greater push the value that smaller than P-value
// the greater push the value that bigger than P-value
// just like the percentile in numpy:
// Given a vector V of length N, the q-th percentile of V is the value q/100 of the way from the minimum to the maximum in a sorted copy of V.
// The values and distances of the two nearest neighbors as well as the method parameter will determine the percentile
// if the normalized ranking does not match the location of q exactly.
// This function is the same as the median if q=50, the same as the minimum if q=0 and the same as the maximum if q=100.
// This optional method parameter specifies the method to use when the desired quantile lies between two data points i < j.
// If g is the fractional part of the index surrounded by i and alpha and beta are correction constants modifying i and j.
//              i+g = (q-alpha)/(n-alpha-beta+1)
// Below, 'q' is the quantile value, 'n' is the sample size and alpha and beta are constants. The following formula gives an interpolation "i + g" of where the quantile would be in the sorted sample.
// With 'i' being the floor and 'g' the fractional part of the result.
// the default method is linear where
// alpha = 1
// beta = 1
#[derive(Debug, Default)]
pub struct Percentile<T>
where
    T: WrapperType,
{
    greater: BinaryHeap<Reverse<OrdPrimitive<T>>>,
    not_greater: BinaryHeap<OrdPrimitive<T>>,
    n: u64,
    p: Option<f64>,
}

impl<T> Percentile<T>
where
    T: WrapperType,
{
    fn push(&mut self, value: T) {
        let value = OrdPrimitive::<T>(value);

        self.n += 1;
        if self.not_greater.is_empty() {
            self.not_greater.push(value);
            return;
        }
        // to keep the not_greater length == floor+1
        // so to ensure the peek of the not_greater is array[floor]
        // and the peek of the greater is array[floor+1]
        let p = self.p.unwrap_or(0.0_f64);
        let floor = (((self.n - 1) as f64) * p / (100_f64)).floor();
        if value <= *self.not_greater.peek().unwrap() {
            self.not_greater.push(value);
            if self.not_greater.len() > (floor + 1.0) as usize {
                self.greater.push(Reverse(self.not_greater.pop().unwrap()));
            }
        } else {
            self.greater.push(Reverse(value));
            if self.not_greater.len() < (floor + 1.0) as usize {
                self.not_greater.push(self.greater.pop().unwrap().0);
            }
        }
    }
}

impl<T> Accumulator for Percentile<T>
where
    T: WrapperType,
{
    fn state(&self) -> Result<Vec<Value>> {
        let nums = self
            .greater
            .iter()
            .map(|x| &x.0)
            .chain(self.not_greater.iter())
            .map(|&n| n.into())
            .collect::<Vec<Value>>();
        Ok(vec![
            Value::List(ListValue::new(nums, T::LogicalType::build_data_type())),
            self.p.into(),
        ])
    }

    fn update_batch(&mut self, values: &[VectorRef]) -> Result<()> {
        if values.is_empty() {
            return Ok(());
        }
        ensure!(values.len() == 2, InvalidInputStateSnafu);
        ensure!(values[0].len() == values[1].len(), InvalidInputStateSnafu);

        if values[0].len() == 0 {
            return Ok(());
        }

        // This is a unary accumulator, so only one column is provided.
        let column = &values[0];
        let mut len = 1;
        let column: &<T as Scalar>::VectorType = if column.is_const() {
            len = column.len();
            let column: &ConstantVector = unsafe { Helper::static_cast(column) };
            unsafe { Helper::static_cast(column.inner()) }
        } else {
            unsafe { Helper::static_cast(column) }
        };

        let x = &values[1];
        let x = Helper::check_get_scalar::<f64>(x).context(error::InvalidInputTypeSnafu {
            err_msg: "expecting \"POLYVAL\" function's second argument to be float64",
        })?;
        // `get(0)` is safe because we have checked `values[1].len() == values[0].len() != 0`
        let first = x.get(0);
        ensure!(!first.is_null(), InvalidInputColSnafu);

        for i in 1..x.len() {
            ensure!(first == x.get(i), InvalidInputColSnafu);
        }

        let first = match first {
            Value::Float64(OrderedFloat(v)) => v,
            // unreachable because we have checked `first` is not null and is i64 above
            _ => unreachable!(),
        };
        if let Some(p) = self.p {
            ensure!(p == first, InvalidInputColSnafu);
        } else {
            self.p = Some(first);
        };

        (0..len).for_each(|_| {
            for v in column.iter_data().flatten() {
                self.push(v);
            }
        });
        Ok(())
    }

    fn merge_batch(&mut self, states: &[VectorRef]) -> Result<()> {
        if states.is_empty() {
            return Ok(());
        }

        ensure!(
            states.len() == 2,
            BadAccumulatorImplSnafu {
                err_msg: "expect 2 states in `merge_batch`"
            }
        );

        let p = &states[1];
        let p = p
            .as_any()
            .downcast_ref::<Float64Vector>()
            .with_context(|| DowncastVectorSnafu {
                err_msg: format!(
                    "expect float64vector, got vector type {}",
                    p.vector_type_name()
                ),
            })?;
        let p = p.get(0);
        if p.is_null() {
            return Ok(());
        }
        let p = match p {
            Value::Float64(OrderedFloat(p)) => p,
            _ => unreachable!(),
        };
        self.p = Some(p);

        let values = &states[0];
        let values = values
            .as_any()
            .downcast_ref::<ListVector>()
            .with_context(|| DowncastVectorSnafu {
                err_msg: format!(
                    "expect ListVector, got vector type {}",
                    values.vector_type_name()
                ),
            })?;
        for value in values.values_iter() {
            if let Some(value) = value.context(FromScalarValueSnafu)? {
                let column: &<T as Scalar>::VectorType = unsafe { Helper::static_cast(&value) };
                for v in column.iter_data().flatten() {
                    self.push(v);
                }
            }
        }
        Ok(())
    }

    fn evaluate(&self) -> Result<Value> {
        if self.not_greater.is_empty() {
            assert!(
                self.greater.is_empty(),
                "not expected in two-heap percentile algorithm, there must be a bug when implementing it"
            );
        }
        let not_greater = self.not_greater.peek();
        if not_greater.is_none() {
            return Ok(Value::Null);
        }
        let not_greater = (*self.not_greater.peek().unwrap()).as_primitive();
        let percentile = if self.greater.is_empty() {
            NumCast::from(not_greater).unwrap()
        } else {
            let greater = self.greater.peek().unwrap();
            let p = if let Some(p) = self.p {
                p
            } else {
                return Ok(Value::Null);
            };
            let fract = (((self.n - 1) as f64) * p / 100_f64).fract();
            let not_greater_v: f64 = NumCast::from(not_greater).unwrap();
            let greater_v: f64 = NumCast::from(greater.0.as_primitive()).unwrap();
            not_greater_v * (1.0 - fract) + greater_v * fract
        };
        Ok(Value::from(percentile))
    }
}

#[as_aggr_func_creator]
#[derive(Debug, Default, AggrFuncTypeStore)]
pub struct PercentileAccumulatorCreator {}

impl AggregateFunctionCreator for PercentileAccumulatorCreator {
    fn creator(&self) -> AccumulatorCreatorFunction {
        let creator: AccumulatorCreatorFunction = Arc::new(move |types: &[ConcreteDataType]| {
            let input_type = &types[0];
            with_match_primitive_type_id!(
                input_type.logical_type_id(),
                |$S| {
                    Ok(Box::new(Percentile::<<$S as LogicalPrimitiveType>::Wrapper>::default()))
                },
                {
                    let err_msg = format!(
                        "\"PERCENTILE\" aggregate function not support data type {:?}",
                        input_type.logical_type_id(),
                    );
                    CreateAccumulatorSnafu { err_msg }.fail()?
                }
            )
        });
        creator
    }

    fn output_type(&self) -> Result<ConcreteDataType> {
        let input_types = self.input_types()?;
        ensure!(input_types.len() == 2, InvalidInputStateSnafu);
        // unwrap is safe because we have checked input_types len must equals 1
        Ok(ConcreteDataType::float64_datatype())
    }

    fn state_types(&self) -> Result<Vec<ConcreteDataType>> {
        let input_types = self.input_types()?;
        ensure!(input_types.len() == 2, InvalidInputStateSnafu);
        Ok(vec![
            ConcreteDataType::list_datatype(input_types.into_iter().next().unwrap()),
            ConcreteDataType::float64_datatype(),
        ])
    }
}

#[cfg(test)]
mod test {
    use datatypes::vectors::{Float64Vector, Int32Vector};

    use super::*;
    #[test]
    fn test_update_batch() {
        // test update empty batch, expect not updating anything
        let mut percentile = Percentile::<i32>::default();
        percentile.update_batch(&[]).unwrap();
        assert!(percentile.not_greater.is_empty());
        assert!(percentile.greater.is_empty());
        assert_eq!(Value::Null, percentile.evaluate().unwrap());

        // test update one not-null value
        let mut percentile = Percentile::<i32>::default();
        let v: Vec<VectorRef> = vec![
            Arc::new(Int32Vector::from(vec![Some(42)])),
            Arc::new(Float64Vector::from(vec![Some(100.0_f64)])),
        ];
        percentile.update_batch(&v).unwrap();
        assert_eq!(Value::from(42.0_f64), percentile.evaluate().unwrap());

        // test update one null value
        let mut percentile = Percentile::<i32>::default();
        let v: Vec<VectorRef> = vec![
            Arc::new(Int32Vector::from(vec![Option::<i32>::None])),
            Arc::new(Float64Vector::from(vec![Some(100.0_f64)])),
        ];
        percentile.update_batch(&v).unwrap();
        assert_eq!(Value::Null, percentile.evaluate().unwrap());

        // test update no null-value batch
        let mut percentile = Percentile::<i32>::default();
        let v: Vec<VectorRef> = vec![
            Arc::new(Int32Vector::from(vec![Some(-1i32), Some(1), Some(2)])),
            Arc::new(Float64Vector::from(vec![
                Some(100.0_f64),
                Some(100.0_f64),
                Some(100.0_f64),
            ])),
        ];
        percentile.update_batch(&v).unwrap();
        assert_eq!(Value::from(2_f64), percentile.evaluate().unwrap());

        // test update null-value batch
        let mut percentile = Percentile::<i32>::default();
        let v: Vec<VectorRef> = vec![
            Arc::new(Int32Vector::from(vec![Some(-2i32), None, Some(3), Some(4)])),
            Arc::new(Float64Vector::from(vec![
                Some(100.0_f64),
                Some(100.0_f64),
                Some(100.0_f64),
                Some(100.0_f64),
            ])),
        ];
        percentile.update_batch(&v).unwrap();
        assert_eq!(Value::from(4_f64), percentile.evaluate().unwrap());

        // test update with constant vector
        let mut percentile = Percentile::<i32>::default();
        let v: Vec<VectorRef> = vec![
            Arc::new(ConstantVector::new(
                Arc::new(Int32Vector::from_vec(vec![4])),
                2,
            )),
            Arc::new(Float64Vector::from(vec![Some(100.0_f64), Some(100.0_f64)])),
        ];
        percentile.update_batch(&v).unwrap();
        assert_eq!(Value::from(4_f64), percentile.evaluate().unwrap());

        // test left border
        let mut percentile = Percentile::<i32>::default();
        let v: Vec<VectorRef> = vec![
            Arc::new(Int32Vector::from(vec![Some(-1i32), Some(1), Some(2)])),
            Arc::new(Float64Vector::from(vec![
                Some(0.0_f64),
                Some(0.0_f64),
                Some(0.0_f64),
            ])),
        ];
        percentile.update_batch(&v).unwrap();
        assert_eq!(Value::from(-1.0_f64), percentile.evaluate().unwrap());

        // test medium
        let mut percentile = Percentile::<i32>::default();
        let v: Vec<VectorRef> = vec![
            Arc::new(Int32Vector::from(vec![Some(-1i32), Some(1), Some(2)])),
            Arc::new(Float64Vector::from(vec![
                Some(50.0_f64),
                Some(50.0_f64),
                Some(50.0_f64),
            ])),
        ];
        percentile.update_batch(&v).unwrap();
        assert_eq!(Value::from(1.0_f64), percentile.evaluate().unwrap());

        // test right border
        let mut percentile = Percentile::<i32>::default();
        let v: Vec<VectorRef> = vec![
            Arc::new(Int32Vector::from(vec![Some(-1i32), Some(1), Some(2)])),
            Arc::new(Float64Vector::from(vec![
                Some(100.0_f64),
                Some(100.0_f64),
                Some(100.0_f64),
            ])),
        ];
        percentile.update_batch(&v).unwrap();
        assert_eq!(Value::from(2.0_f64), percentile.evaluate().unwrap());

        // the following is the result of numpy.percentile
        // numpy.percentile
        // a = np.array([[10,7,4]])
        // np.percentile(a,40)
        // >> 6.400000000000
        let mut percentile = Percentile::<i32>::default();
        let v: Vec<VectorRef> = vec![
            Arc::new(Int32Vector::from(vec![Some(10i32), Some(7), Some(4)])),
            Arc::new(Float64Vector::from(vec![
                Some(40.0_f64),
                Some(40.0_f64),
                Some(40.0_f64),
            ])),
        ];
        percentile.update_batch(&v).unwrap();
        assert_eq!(Value::from(6.400000000_f64), percentile.evaluate().unwrap());

        // the following is the result of numpy.percentile
        // a = np.array([[10,7,4]])
        // np.percentile(a,95)
        // >> 9.7000000000000011
        let mut percentile = Percentile::<i32>::default();
        let v: Vec<VectorRef> = vec![
            Arc::new(Int32Vector::from(vec![Some(10i32), Some(7), Some(4)])),
            Arc::new(Float64Vector::from(vec![
                Some(95.0_f64),
                Some(95.0_f64),
                Some(95.0_f64),
            ])),
        ];
        percentile.update_batch(&v).unwrap();
        assert_eq!(
            Value::from(9.700_000_000_000_001_f64),
            percentile.evaluate().unwrap()
        );
    }
}