common_function/scalars/aggregate/
argmax.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::cmp::Ordering;
use std::sync::Arc;

use common_macro::{as_aggr_func_creator, AggrFuncTypeStore};
use common_query::error::{
    BadAccumulatorImplSnafu, CreateAccumulatorSnafu, InvalidInputStateSnafu, Result,
};
use common_query::logical_plan::accumulator::AggrFuncTypeStore;
use common_query::logical_plan::{Accumulator, AggregateFunctionCreator};
use common_query::prelude::*;
use datatypes::prelude::*;
use datatypes::types::{LogicalPrimitiveType, WrapperType};
use datatypes::vectors::{ConstantVector, Helper};
use datatypes::with_match_primitive_type_id;
use snafu::ensure;

// https://numpy.org/doc/stable/reference/generated/numpy.argmax.html
// return the index of the max value
#[derive(Debug, Default)]
pub struct Argmax<T> {
    max: Option<T>,
    n: u64,
}

impl<T> Argmax<T>
where
    T: PartialOrd + Copy,
{
    fn update(&mut self, value: T, index: u64) {
        if let Some(Ordering::Less) = self.max.partial_cmp(&Some(value)) {
            self.max = Some(value);
            self.n = index;
        }
    }
}

impl<T> Accumulator for Argmax<T>
where
    T: WrapperType + PartialOrd,
{
    fn state(&self) -> Result<Vec<Value>> {
        match self.max {
            Some(max) => Ok(vec![max.into(), self.n.into()]),
            _ => Ok(vec![Value::Null, self.n.into()]),
        }
    }

    fn update_batch(&mut self, values: &[VectorRef]) -> Result<()> {
        if values.is_empty() {
            return Ok(());
        }

        let column = &values[0];
        let column: &<T as Scalar>::VectorType = if column.is_const() {
            let column: &ConstantVector = unsafe { Helper::static_cast(column) };
            unsafe { Helper::static_cast(column.inner()) }
        } else {
            unsafe { Helper::static_cast(column) }
        };
        for (i, v) in column.iter_data().enumerate() {
            if let Some(value) = v {
                self.update(value, i as u64);
            }
        }
        Ok(())
    }

    fn merge_batch(&mut self, states: &[VectorRef]) -> Result<()> {
        if states.is_empty() {
            return Ok(());
        }

        ensure!(
            states.len() == 2,
            BadAccumulatorImplSnafu {
                err_msg: "expect 2 states in `merge_batch`",
            }
        );

        let max = &states[0];
        let index = &states[1];
        let max: &<T as Scalar>::VectorType = unsafe { Helper::static_cast(max) };
        let index: &<u64 as Scalar>::VectorType = unsafe { Helper::static_cast(index) };
        index
            .iter_data()
            .flatten()
            .zip(max.iter_data().flatten())
            .for_each(|(i, max)| self.update(max, i));
        Ok(())
    }

    fn evaluate(&self) -> Result<Value> {
        match self.max {
            Some(_) => Ok(self.n.into()),
            _ => Ok(Value::Null),
        }
    }
}

#[as_aggr_func_creator]
#[derive(Debug, Default, AggrFuncTypeStore)]
pub struct ArgmaxAccumulatorCreator {}

impl AggregateFunctionCreator for ArgmaxAccumulatorCreator {
    fn creator(&self) -> AccumulatorCreatorFunction {
        let creator: AccumulatorCreatorFunction = Arc::new(move |types: &[ConcreteDataType]| {
            let input_type = &types[0];
            with_match_primitive_type_id!(
                input_type.logical_type_id(),
                |$S| {
                    Ok(Box::new(Argmax::<<$S as LogicalPrimitiveType>::Wrapper>::default()))
                },
                {
                    let err_msg = format!(
                        "\"ARGMAX\" aggregate function not support data type {:?}",
                        input_type.logical_type_id(),
                    );
                    CreateAccumulatorSnafu { err_msg }.fail()?
                }
            )
        });
        creator
    }

    fn output_type(&self) -> Result<ConcreteDataType> {
        Ok(ConcreteDataType::uint64_datatype())
    }

    fn state_types(&self) -> Result<Vec<ConcreteDataType>> {
        let input_types = self.input_types()?;

        ensure!(input_types.len() == 1, InvalidInputStateSnafu);

        Ok(vec![
            input_types.into_iter().next().unwrap(),
            ConcreteDataType::uint64_datatype(),
        ])
    }
}

#[cfg(test)]
mod test {
    use datatypes::vectors::Int32Vector;

    use super::*;
    #[test]
    fn test_update_batch() {
        // test update empty batch, expect not updating anything
        let mut argmax = Argmax::<i32>::default();
        argmax.update_batch(&[]).unwrap();
        assert_eq!(Value::Null, argmax.evaluate().unwrap());

        // test update one not-null value
        let mut argmax = Argmax::<i32>::default();
        let v: Vec<VectorRef> = vec![Arc::new(Int32Vector::from(vec![Some(42)]))];
        argmax.update_batch(&v).unwrap();
        assert_eq!(Value::from(0_u64), argmax.evaluate().unwrap());

        // test update one null value
        let mut argmax = Argmax::<i32>::default();
        let v: Vec<VectorRef> = vec![Arc::new(Int32Vector::from(vec![Option::<i32>::None]))];
        argmax.update_batch(&v).unwrap();
        assert_eq!(Value::Null, argmax.evaluate().unwrap());

        // test update no null-value batch
        let mut argmax = Argmax::<i32>::default();
        let v: Vec<VectorRef> = vec![Arc::new(Int32Vector::from(vec![
            Some(-1i32),
            Some(1),
            Some(3),
        ]))];
        argmax.update_batch(&v).unwrap();
        assert_eq!(Value::from(2_u64), argmax.evaluate().unwrap());

        // test update null-value batch
        let mut argmax = Argmax::<i32>::default();
        let v: Vec<VectorRef> = vec![Arc::new(Int32Vector::from(vec![
            Some(-2i32),
            None,
            Some(4),
        ]))];
        argmax.update_batch(&v).unwrap();
        assert_eq!(Value::from(2_u64), argmax.evaluate().unwrap());

        // test update with constant vector
        let mut argmax = Argmax::<i32>::default();
        let v: Vec<VectorRef> = vec![Arc::new(ConstantVector::new(
            Arc::new(Int32Vector::from_vec(vec![4])),
            10,
        ))];
        argmax.update_batch(&v).unwrap();
        assert_eq!(Value::from(0_u64), argmax.evaluate().unwrap());
    }
}