catalog/system_schema/pg_catalog/
pg_database.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::sync::{Arc, Weak};

use arrow_schema::SchemaRef as ArrowSchemaRef;
use common_catalog::consts::PG_CATALOG_PG_DATABASE_TABLE_ID;
use common_error::ext::BoxedError;
use common_recordbatch::adapter::RecordBatchStreamAdapter;
use common_recordbatch::{DfSendableRecordBatchStream, RecordBatch};
use datafusion::execution::TaskContext;
use datafusion::physical_plan::stream::RecordBatchStreamAdapter as DfRecordBatchStreamAdapter;
use datafusion::physical_plan::streaming::PartitionStream as DfPartitionStream;
use datatypes::scalars::ScalarVectorBuilder;
use datatypes::schema::{Schema, SchemaRef};
use datatypes::value::Value;
use datatypes::vectors::{StringVectorBuilder, UInt32VectorBuilder, VectorRef};
use snafu::{OptionExt, ResultExt};
use store_api::storage::ScanRequest;

use super::pg_namespace::oid_map::PGNamespaceOidMapRef;
use super::{query_ctx, OID_COLUMN_NAME, PG_DATABASE};
use crate::error::{
    CreateRecordBatchSnafu, InternalSnafu, Result, UpgradeWeakCatalogManagerRefSnafu,
};
use crate::information_schema::Predicates;
use crate::system_schema::utils::tables::{string_column, u32_column};
use crate::system_schema::SystemTable;
use crate::CatalogManager;

// === column name ===
pub const DATNAME: &str = "datname";

/// The initial capacity of the vector builders.
const INIT_CAPACITY: usize = 42;

/// The `pg_catalog.database` table implementation.
pub(super) struct PGDatabase {
    schema: SchemaRef,
    catalog_name: String,
    catalog_manager: Weak<dyn CatalogManager>,

    // Workaround to convert schema_name to a numeric id
    namespace_oid_map: PGNamespaceOidMapRef,
}

impl std::fmt::Debug for PGDatabase {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("PGDatabase")
            .field("schema", &self.schema)
            .field("catalog_name", &self.catalog_name)
            .finish()
    }
}

impl PGDatabase {
    pub(super) fn new(
        catalog_name: String,
        catalog_manager: Weak<dyn CatalogManager>,
        namespace_oid_map: PGNamespaceOidMapRef,
    ) -> Self {
        Self {
            schema: Self::schema(),
            catalog_name,
            catalog_manager,
            namespace_oid_map,
        }
    }

    fn schema() -> SchemaRef {
        Arc::new(Schema::new(vec![
            u32_column(OID_COLUMN_NAME),
            string_column(DATNAME),
        ]))
    }

    fn builder(&self) -> PGCDatabaseBuilder {
        PGCDatabaseBuilder::new(
            self.schema.clone(),
            self.catalog_name.clone(),
            self.catalog_manager.clone(),
            self.namespace_oid_map.clone(),
        )
    }
}

impl DfPartitionStream for PGDatabase {
    fn schema(&self) -> &ArrowSchemaRef {
        self.schema.arrow_schema()
    }

    fn execute(&self, _: Arc<TaskContext>) -> DfSendableRecordBatchStream {
        let schema = self.schema.arrow_schema().clone();
        let mut builder = self.builder();
        Box::pin(DfRecordBatchStreamAdapter::new(
            schema,
            futures::stream::once(async move {
                builder
                    .make_database(None)
                    .await
                    .map(|x| x.into_df_record_batch())
                    .map_err(Into::into)
            }),
        ))
    }
}

impl SystemTable for PGDatabase {
    fn table_id(&self) -> table::metadata::TableId {
        PG_CATALOG_PG_DATABASE_TABLE_ID
    }

    fn table_name(&self) -> &'static str {
        PG_DATABASE
    }

    fn schema(&self) -> SchemaRef {
        self.schema.clone()
    }

    fn to_stream(
        &self,
        request: ScanRequest,
    ) -> Result<common_recordbatch::SendableRecordBatchStream> {
        let schema = self.schema.arrow_schema().clone();
        let mut builder = self.builder();
        let stream = Box::pin(DfRecordBatchStreamAdapter::new(
            schema,
            futures::stream::once(async move {
                builder
                    .make_database(Some(request))
                    .await
                    .map(|x| x.into_df_record_batch())
                    .map_err(Into::into)
            }),
        ));
        Ok(Box::pin(
            RecordBatchStreamAdapter::try_new(stream)
                .map_err(BoxedError::new)
                .context(InternalSnafu)?,
        ))
    }
}

/// Builds the `pg_catalog.pg_database` table row by row
/// `oid` use schema name as a workaround since we don't have numeric schema id.
/// `nspname` is the schema name.
struct PGCDatabaseBuilder {
    schema: SchemaRef,
    catalog_name: String,
    catalog_manager: Weak<dyn CatalogManager>,
    namespace_oid_map: PGNamespaceOidMapRef,

    oid: UInt32VectorBuilder,
    datname: StringVectorBuilder,
}

impl PGCDatabaseBuilder {
    fn new(
        schema: SchemaRef,
        catalog_name: String,
        catalog_manager: Weak<dyn CatalogManager>,
        namespace_oid_map: PGNamespaceOidMapRef,
    ) -> Self {
        Self {
            schema,
            catalog_name,
            catalog_manager,
            namespace_oid_map,

            oid: UInt32VectorBuilder::with_capacity(INIT_CAPACITY),
            datname: StringVectorBuilder::with_capacity(INIT_CAPACITY),
        }
    }

    async fn make_database(&mut self, request: Option<ScanRequest>) -> Result<RecordBatch> {
        let catalog_name = self.catalog_name.clone();
        let catalog_manager = self
            .catalog_manager
            .upgrade()
            .context(UpgradeWeakCatalogManagerRefSnafu)?;
        let predicates = Predicates::from_scan_request(&request);
        for schema_name in catalog_manager
            .schema_names(&catalog_name, query_ctx())
            .await?
        {
            self.add_database(&predicates, &schema_name);
        }
        self.finish()
    }

    fn add_database(&mut self, predicates: &Predicates, schema_name: &str) {
        let oid = self.namespace_oid_map.get_oid(schema_name);
        let row: [(&str, &Value); 2] = [
            (OID_COLUMN_NAME, &Value::from(oid)),
            (DATNAME, &Value::from(schema_name)),
        ];

        if !predicates.eval(&row) {
            return;
        }

        self.oid.push(Some(oid));
        self.datname.push(Some(schema_name));
    }

    fn finish(&mut self) -> Result<RecordBatch> {
        let columns: Vec<VectorRef> =
            vec![Arc::new(self.oid.finish()), Arc::new(self.datname.finish())];
        RecordBatch::new(self.schema.clone(), columns).context(CreateRecordBatchSnafu)
    }
}