catalog/system_schema/
memory_table.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

mod table_columns;

use std::sync::Arc;

use arrow_schema::SchemaRef as ArrowSchemaRef;
use common_error::ext::BoxedError;
use common_recordbatch::adapter::RecordBatchStreamAdapter;
use common_recordbatch::{RecordBatch, SendableRecordBatchStream};
use datafusion::execution::TaskContext;
use datafusion::physical_plan::stream::RecordBatchStreamAdapter as DfRecordBatchStreamAdapter;
use datafusion::physical_plan::streaming::PartitionStream as DfPartitionStream;
use datafusion::physical_plan::SendableRecordBatchStream as DfSendableRecordBatchStream;
use datatypes::schema::SchemaRef;
use datatypes::vectors::VectorRef;
use snafu::ResultExt;
use store_api::storage::{ScanRequest, TableId};

use super::SystemTable;
use crate::error::{CreateRecordBatchSnafu, InternalSnafu, Result};

/// A memory table with specified schema and columns.
pub(crate) struct MemoryTable {
    pub(crate) table_id: TableId,
    pub(crate) table_name: &'static str,
    pub(crate) schema: SchemaRef,
    pub(crate) columns: Vec<VectorRef>,
}

impl MemoryTable {
    /// Creates a memory table with table id, name, schema and columns.
    pub fn new(
        table_id: TableId,
        table_name: &'static str,
        schema: SchemaRef,
        columns: Vec<VectorRef>,
    ) -> Self {
        Self {
            table_id,
            table_name,
            schema,
            columns,
        }
    }

    pub fn builder(&self) -> MemoryTableBuilder {
        MemoryTableBuilder::new(self.schema.clone(), self.columns.clone())
    }
}

pub(crate) struct MemoryTableBuilder {
    schema: SchemaRef,
    columns: Vec<VectorRef>,
}

impl MemoryTableBuilder {
    fn new(schema: SchemaRef, columns: Vec<VectorRef>) -> Self {
        Self { schema, columns }
    }

    /// Construct the `information_schema.{table_name}` virtual table
    pub async fn memory_records(&mut self) -> Result<RecordBatch> {
        if self.columns.is_empty() {
            Ok(RecordBatch::new_empty(self.schema.clone()))
        } else {
            RecordBatch::new(self.schema.clone(), std::mem::take(&mut self.columns))
                .context(CreateRecordBatchSnafu)
        }
    }
}

impl DfPartitionStream for MemoryTable {
    fn schema(&self) -> &ArrowSchemaRef {
        self.schema.arrow_schema()
    }

    fn execute(&self, _: Arc<TaskContext>) -> DfSendableRecordBatchStream {
        let schema = self.schema.arrow_schema().clone();
        let mut builder = self.builder();
        Box::pin(DfRecordBatchStreamAdapter::new(
            schema,
            futures::stream::once(async move {
                builder
                    .memory_records()
                    .await
                    .map(|x| x.into_df_record_batch())
                    .map_err(Into::into)
            }),
        ))
    }
}

impl SystemTable for MemoryTable {
    fn table_id(&self) -> TableId {
        self.table_id
    }

    fn table_name(&self) -> &'static str {
        self.table_name
    }

    fn schema(&self) -> SchemaRef {
        self.schema.clone()
    }

    fn to_stream(&self, _request: ScanRequest) -> Result<SendableRecordBatchStream> {
        let schema = self.schema.arrow_schema().clone();
        let mut builder = self.builder();
        let stream = Box::pin(DfRecordBatchStreamAdapter::new(
            schema,
            futures::stream::once(async move {
                builder
                    .memory_records()
                    .await
                    .map(|x| x.into_df_record_batch())
                    .map_err(Into::into)
            }),
        ));
        Ok(Box::pin(
            RecordBatchStreamAdapter::try_new(stream)
                .map_err(BoxedError::new)
                .context(InternalSnafu)?,
        ))
    }
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;

    use common_recordbatch::RecordBatches;
    use datatypes::prelude::ConcreteDataType;
    use datatypes::schema::{ColumnSchema, Schema};
    use datatypes::vectors::StringVector;

    use super::*;
    use crate::system_schema::SystemTable;

    #[tokio::test]
    async fn test_memory_table() {
        let schema = Arc::new(Schema::new(vec![
            ColumnSchema::new("a", ConcreteDataType::string_datatype(), false),
            ColumnSchema::new("b", ConcreteDataType::string_datatype(), false),
        ]));

        let table = MemoryTable::new(
            42,
            "test",
            schema.clone(),
            vec![
                Arc::new(StringVector::from(vec!["a1", "a2"])),
                Arc::new(StringVector::from(vec!["b1", "b2"])),
            ],
        );

        assert_eq!(42, table.table_id());
        assert_eq!("test", table.table_name);
        assert_eq!(schema, SystemTable::schema(&table));

        let stream = table.to_stream(ScanRequest::default()).unwrap();

        let batches = RecordBatches::try_collect(stream).await.unwrap();

        assert_eq!(
            "\
+----+----+
| a  | b  |
+----+----+
| a1 | b1 |
| a2 | b2 |
+----+----+",
            batches.pretty_print().unwrap()
        );
    }

    #[tokio::test]
    async fn test_empty_memory_table() {
        let schema = Arc::new(Schema::new(vec![
            ColumnSchema::new("a", ConcreteDataType::string_datatype(), false),
            ColumnSchema::new("b", ConcreteDataType::string_datatype(), false),
        ]));

        let table = MemoryTable::new(42, "test", schema.clone(), vec![]);

        assert_eq!(42, table.table_id());
        assert_eq!("test", table.table_name());
        assert_eq!(schema, SystemTable::schema(&table));

        let stream = table.to_stream(ScanRequest::default()).unwrap();

        let batches = RecordBatches::try_collect(stream).await.unwrap();

        assert_eq!(
            "\
+---+---+
| a | b |
+---+---+
+---+---+",
            batches.pretty_print().unwrap()
        );
    }
}