catalog/system_schema/information_schema/
tables.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::collections::HashSet;
use std::sync::{Arc, Weak};

use arrow_schema::SchemaRef as ArrowSchemaRef;
use common_catalog::consts::{INFORMATION_SCHEMA_TABLES_TABLE_ID, MITO_ENGINE};
use common_error::ext::BoxedError;
use common_meta::datanode::RegionStat;
use common_recordbatch::adapter::RecordBatchStreamAdapter;
use common_recordbatch::{RecordBatch, SendableRecordBatchStream};
use common_telemetry::error;
use datafusion::execution::TaskContext;
use datafusion::physical_plan::stream::RecordBatchStreamAdapter as DfRecordBatchStreamAdapter;
use datafusion::physical_plan::streaming::PartitionStream as DfPartitionStream;
use datafusion::physical_plan::SendableRecordBatchStream as DfSendableRecordBatchStream;
use datatypes::prelude::{ConcreteDataType, ScalarVectorBuilder, VectorRef};
use datatypes::schema::{ColumnSchema, Schema, SchemaRef};
use datatypes::value::Value;
use datatypes::vectors::{
    DateTimeVectorBuilder, StringVectorBuilder, UInt32VectorBuilder, UInt64VectorBuilder,
};
use futures::TryStreamExt;
use snafu::{OptionExt, ResultExt};
use store_api::storage::{RegionId, ScanRequest, TableId};
use table::metadata::{TableInfo, TableType};

use super::TABLES;
use crate::error::{
    CreateRecordBatchSnafu, InternalSnafu, Result, UpgradeWeakCatalogManagerRefSnafu,
};
use crate::system_schema::information_schema::{InformationTable, Predicates};
use crate::system_schema::utils;
use crate::CatalogManager;

pub const TABLE_CATALOG: &str = "table_catalog";
pub const TABLE_SCHEMA: &str = "table_schema";
pub const TABLE_NAME: &str = "table_name";
pub const TABLE_TYPE: &str = "table_type";
pub const VERSION: &str = "version";
pub const ROW_FORMAT: &str = "row_format";
pub const TABLE_ROWS: &str = "table_rows";
pub const DATA_LENGTH: &str = "data_length";
pub const INDEX_LENGTH: &str = "index_length";
pub const MAX_DATA_LENGTH: &str = "max_data_length";
pub const AVG_ROW_LENGTH: &str = "avg_row_length";
pub const DATA_FREE: &str = "data_free";
pub const AUTO_INCREMENT: &str = "auto_increment";
pub const CREATE_TIME: &str = "create_time";
pub const UPDATE_TIME: &str = "update_time";
pub const CHECK_TIME: &str = "check_time";
pub const TABLE_COLLATION: &str = "table_collation";
pub const CHECKSUM: &str = "checksum";
pub const CREATE_OPTIONS: &str = "create_options";
pub const TABLE_COMMENT: &str = "table_comment";
pub const MAX_INDEX_LENGTH: &str = "max_index_length";
pub const TEMPORARY: &str = "temporary";
const TABLE_ID: &str = "table_id";
pub const ENGINE: &str = "engine";
const INIT_CAPACITY: usize = 42;

pub(super) struct InformationSchemaTables {
    schema: SchemaRef,
    catalog_name: String,
    catalog_manager: Weak<dyn CatalogManager>,
}

impl InformationSchemaTables {
    pub(super) fn new(catalog_name: String, catalog_manager: Weak<dyn CatalogManager>) -> Self {
        Self {
            schema: Self::schema(),
            catalog_name,
            catalog_manager,
        }
    }

    pub(crate) fn schema() -> SchemaRef {
        Arc::new(Schema::new(vec![
            ColumnSchema::new(TABLE_CATALOG, ConcreteDataType::string_datatype(), false),
            ColumnSchema::new(TABLE_SCHEMA, ConcreteDataType::string_datatype(), false),
            ColumnSchema::new(TABLE_NAME, ConcreteDataType::string_datatype(), false),
            ColumnSchema::new(TABLE_TYPE, ConcreteDataType::string_datatype(), false),
            ColumnSchema::new(TABLE_ID, ConcreteDataType::uint32_datatype(), true),
            ColumnSchema::new(DATA_LENGTH, ConcreteDataType::uint64_datatype(), true),
            ColumnSchema::new(MAX_DATA_LENGTH, ConcreteDataType::uint64_datatype(), true),
            ColumnSchema::new(INDEX_LENGTH, ConcreteDataType::uint64_datatype(), true),
            ColumnSchema::new(MAX_INDEX_LENGTH, ConcreteDataType::uint64_datatype(), true),
            ColumnSchema::new(AVG_ROW_LENGTH, ConcreteDataType::uint64_datatype(), true),
            ColumnSchema::new(ENGINE, ConcreteDataType::string_datatype(), true),
            ColumnSchema::new(VERSION, ConcreteDataType::uint64_datatype(), true),
            ColumnSchema::new(ROW_FORMAT, ConcreteDataType::string_datatype(), true),
            ColumnSchema::new(TABLE_ROWS, ConcreteDataType::uint64_datatype(), true),
            ColumnSchema::new(DATA_FREE, ConcreteDataType::uint64_datatype(), true),
            ColumnSchema::new(AUTO_INCREMENT, ConcreteDataType::uint64_datatype(), true),
            ColumnSchema::new(CREATE_TIME, ConcreteDataType::datetime_datatype(), true),
            ColumnSchema::new(UPDATE_TIME, ConcreteDataType::datetime_datatype(), true),
            ColumnSchema::new(CHECK_TIME, ConcreteDataType::datetime_datatype(), true),
            ColumnSchema::new(TABLE_COLLATION, ConcreteDataType::string_datatype(), true),
            ColumnSchema::new(CHECKSUM, ConcreteDataType::uint64_datatype(), true),
            ColumnSchema::new(CREATE_OPTIONS, ConcreteDataType::string_datatype(), true),
            ColumnSchema::new(TABLE_COMMENT, ConcreteDataType::string_datatype(), true),
            ColumnSchema::new(TEMPORARY, ConcreteDataType::string_datatype(), true),
        ]))
    }

    fn builder(&self) -> InformationSchemaTablesBuilder {
        InformationSchemaTablesBuilder::new(
            self.schema.clone(),
            self.catalog_name.clone(),
            self.catalog_manager.clone(),
        )
    }
}

impl InformationTable for InformationSchemaTables {
    fn table_id(&self) -> TableId {
        INFORMATION_SCHEMA_TABLES_TABLE_ID
    }

    fn table_name(&self) -> &'static str {
        TABLES
    }

    fn schema(&self) -> SchemaRef {
        self.schema.clone()
    }

    fn to_stream(&self, request: ScanRequest) -> Result<SendableRecordBatchStream> {
        let schema = self.schema.arrow_schema().clone();
        let mut builder = self.builder();
        let stream = Box::pin(DfRecordBatchStreamAdapter::new(
            schema,
            futures::stream::once(async move {
                builder
                    .make_tables(Some(request))
                    .await
                    .map(|x| x.into_df_record_batch())
                    .map_err(|err| datafusion::error::DataFusionError::External(Box::new(err)))
            }),
        ));
        Ok(Box::pin(
            RecordBatchStreamAdapter::try_new(stream)
                .map_err(BoxedError::new)
                .context(InternalSnafu)?,
        ))
    }
}

/// Builds the `information_schema.TABLE` table row by row
///
/// Columns are based on <https://www.postgresql.org/docs/current/infoschema-columns.html>
struct InformationSchemaTablesBuilder {
    schema: SchemaRef,
    catalog_name: String,
    catalog_manager: Weak<dyn CatalogManager>,

    catalog_names: StringVectorBuilder,
    schema_names: StringVectorBuilder,
    table_names: StringVectorBuilder,
    table_types: StringVectorBuilder,
    table_ids: UInt32VectorBuilder,
    version: UInt64VectorBuilder,
    row_format: StringVectorBuilder,
    table_rows: UInt64VectorBuilder,
    data_length: UInt64VectorBuilder,
    max_data_length: UInt64VectorBuilder,
    index_length: UInt64VectorBuilder,
    avg_row_length: UInt64VectorBuilder,
    max_index_length: UInt64VectorBuilder,
    data_free: UInt64VectorBuilder,
    auto_increment: UInt64VectorBuilder,
    create_time: DateTimeVectorBuilder,
    update_time: DateTimeVectorBuilder,
    check_time: DateTimeVectorBuilder,
    table_collation: StringVectorBuilder,
    checksum: UInt64VectorBuilder,
    create_options: StringVectorBuilder,
    table_comment: StringVectorBuilder,
    engines: StringVectorBuilder,
    temporary: StringVectorBuilder,
}

impl InformationSchemaTablesBuilder {
    fn new(
        schema: SchemaRef,
        catalog_name: String,
        catalog_manager: Weak<dyn CatalogManager>,
    ) -> Self {
        Self {
            schema,
            catalog_name,
            catalog_manager,
            catalog_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
            schema_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
            table_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
            table_types: StringVectorBuilder::with_capacity(INIT_CAPACITY),
            table_ids: UInt32VectorBuilder::with_capacity(INIT_CAPACITY),
            data_length: UInt64VectorBuilder::with_capacity(INIT_CAPACITY),
            max_data_length: UInt64VectorBuilder::with_capacity(INIT_CAPACITY),
            index_length: UInt64VectorBuilder::with_capacity(INIT_CAPACITY),
            avg_row_length: UInt64VectorBuilder::with_capacity(INIT_CAPACITY),
            engines: StringVectorBuilder::with_capacity(INIT_CAPACITY),
            version: UInt64VectorBuilder::with_capacity(INIT_CAPACITY),
            row_format: StringVectorBuilder::with_capacity(INIT_CAPACITY),
            table_rows: UInt64VectorBuilder::with_capacity(INIT_CAPACITY),
            max_index_length: UInt64VectorBuilder::with_capacity(INIT_CAPACITY),
            data_free: UInt64VectorBuilder::with_capacity(INIT_CAPACITY),
            auto_increment: UInt64VectorBuilder::with_capacity(INIT_CAPACITY),
            create_time: DateTimeVectorBuilder::with_capacity(INIT_CAPACITY),
            update_time: DateTimeVectorBuilder::with_capacity(INIT_CAPACITY),
            check_time: DateTimeVectorBuilder::with_capacity(INIT_CAPACITY),
            table_collation: StringVectorBuilder::with_capacity(INIT_CAPACITY),
            checksum: UInt64VectorBuilder::with_capacity(INIT_CAPACITY),
            create_options: StringVectorBuilder::with_capacity(INIT_CAPACITY),
            table_comment: StringVectorBuilder::with_capacity(INIT_CAPACITY),
            temporary: StringVectorBuilder::with_capacity(INIT_CAPACITY),
        }
    }

    /// Construct the `information_schema.tables` virtual table
    async fn make_tables(&mut self, request: Option<ScanRequest>) -> Result<RecordBatch> {
        let catalog_name = self.catalog_name.clone();
        let catalog_manager = self
            .catalog_manager
            .upgrade()
            .context(UpgradeWeakCatalogManagerRefSnafu)?;
        let predicates = Predicates::from_scan_request(&request);

        let information_extension = utils::information_extension(&self.catalog_manager)?;

        // TODO(dennis): `region_stats` API is not stable in distributed cluster because of network issue etc.
        // But we don't want the statements such as `show tables` fail,
        // so using `unwrap_or_else` here instead of `?` operator.
        let region_stats = information_extension
            .region_stats()
            .await
            .map_err(|e| {
                error!(e; "Failed to call region_stats");
                e
            })
            .unwrap_or_else(|_| vec![]);

        for schema_name in catalog_manager.schema_names(&catalog_name, None).await? {
            let mut stream = catalog_manager.tables(&catalog_name, &schema_name, None);

            while let Some(table) = stream.try_next().await? {
                let table_info = table.table_info();

                // TODO(dennis): make it working for metric engine
                let table_region_stats = if table_info.meta.engine == MITO_ENGINE {
                    let region_ids = table_info
                        .meta
                        .region_numbers
                        .iter()
                        .map(|n| RegionId::new(table_info.ident.table_id, *n))
                        .collect::<HashSet<_>>();

                    region_stats
                        .iter()
                        .filter(|stat| region_ids.contains(&stat.id))
                        .collect::<Vec<_>>()
                } else {
                    vec![]
                };

                self.add_table(
                    &predicates,
                    &catalog_name,
                    &schema_name,
                    table_info,
                    table.table_type(),
                    &table_region_stats,
                );
            }
        }

        self.finish()
    }

    #[allow(clippy::too_many_arguments)]
    fn add_table(
        &mut self,
        predicates: &Predicates,
        catalog_name: &str,
        schema_name: &str,
        table_info: Arc<TableInfo>,
        table_type: TableType,
        region_stats: &[&RegionStat],
    ) {
        let table_name = table_info.name.as_ref();
        let table_id = table_info.table_id();
        let engine = table_info.meta.engine.as_ref();

        let table_type_text = match table_type {
            TableType::Base => "BASE TABLE",
            TableType::View => "VIEW",
            TableType::Temporary => "LOCAL TEMPORARY",
        };

        let row = [
            (TABLE_CATALOG, &Value::from(catalog_name)),
            (TABLE_ID, &Value::from(table_id)),
            (TABLE_SCHEMA, &Value::from(schema_name)),
            (ENGINE, &Value::from(engine)),
            (TABLE_NAME, &Value::from(table_name)),
            (TABLE_TYPE, &Value::from(table_type_text)),
        ];

        if !predicates.eval(&row) {
            return;
        }

        self.catalog_names.push(Some(catalog_name));
        self.schema_names.push(Some(schema_name));
        self.table_names.push(Some(table_name));
        self.table_types.push(Some(table_type_text));
        self.table_ids.push(Some(table_id));

        let data_length = region_stats.iter().map(|stat| stat.sst_size).sum();
        let table_rows = region_stats.iter().map(|stat| stat.num_rows).sum();
        let index_length = region_stats.iter().map(|stat| stat.index_size).sum();

        // It's not precise, but it is acceptable for long-term data storage.
        let avg_row_length = if table_rows > 0 {
            let total_data_length = data_length
                + region_stats
                    .iter()
                    .map(|stat| stat.memtable_size)
                    .sum::<u64>();

            total_data_length / table_rows
        } else {
            0
        };

        self.data_length.push(Some(data_length));
        self.index_length.push(Some(index_length));
        self.table_rows.push(Some(table_rows));
        self.avg_row_length.push(Some(avg_row_length));

        // TODO(sunng87): use real data for these fields
        self.max_data_length.push(Some(0));
        self.checksum.push(Some(0));
        self.max_index_length.push(Some(0));
        self.data_free.push(Some(0));
        self.auto_increment.push(Some(0));
        self.row_format.push(Some("Fixed"));
        self.table_collation.push(Some("utf8_bin"));
        self.update_time.push(None);
        self.check_time.push(None);
        // use mariadb default table version number here
        self.version.push(Some(11));
        self.table_comment.push(table_info.desc.as_deref());
        self.create_options
            .push(Some(table_info.meta.options.to_string().as_ref()));
        self.create_time
            .push(Some(table_info.meta.created_on.timestamp_millis().into()));

        self.temporary
            .push(if matches!(table_type, TableType::Temporary) {
                Some("Y")
            } else {
                Some("N")
            });
        self.engines.push(Some(engine));
    }

    fn finish(&mut self) -> Result<RecordBatch> {
        let columns: Vec<VectorRef> = vec![
            Arc::new(self.catalog_names.finish()),
            Arc::new(self.schema_names.finish()),
            Arc::new(self.table_names.finish()),
            Arc::new(self.table_types.finish()),
            Arc::new(self.table_ids.finish()),
            Arc::new(self.data_length.finish()),
            Arc::new(self.max_data_length.finish()),
            Arc::new(self.index_length.finish()),
            Arc::new(self.max_index_length.finish()),
            Arc::new(self.avg_row_length.finish()),
            Arc::new(self.engines.finish()),
            Arc::new(self.version.finish()),
            Arc::new(self.row_format.finish()),
            Arc::new(self.table_rows.finish()),
            Arc::new(self.data_free.finish()),
            Arc::new(self.auto_increment.finish()),
            Arc::new(self.create_time.finish()),
            Arc::new(self.update_time.finish()),
            Arc::new(self.check_time.finish()),
            Arc::new(self.table_collation.finish()),
            Arc::new(self.checksum.finish()),
            Arc::new(self.create_options.finish()),
            Arc::new(self.table_comment.finish()),
            Arc::new(self.temporary.finish()),
        ];
        RecordBatch::new(self.schema.clone(), columns).context(CreateRecordBatchSnafu)
    }
}

impl DfPartitionStream for InformationSchemaTables {
    fn schema(&self) -> &ArrowSchemaRef {
        self.schema.arrow_schema()
    }

    fn execute(&self, _: Arc<TaskContext>) -> DfSendableRecordBatchStream {
        let schema = self.schema.arrow_schema().clone();
        let mut builder = self.builder();
        Box::pin(DfRecordBatchStreamAdapter::new(
            schema,
            futures::stream::once(async move {
                builder
                    .make_tables(None)
                    .await
                    .map(|x| x.into_df_record_batch())
                    .map_err(Into::into)
            }),
        ))
    }
}