catalog/system_schema/information_schema/
schemata.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::sync::{Arc, Weak};

use arrow_schema::SchemaRef as ArrowSchemaRef;
use common_catalog::consts::INFORMATION_SCHEMA_SCHEMATA_TABLE_ID;
use common_error::ext::BoxedError;
use common_meta::key::schema_name::SchemaNameKey;
use common_recordbatch::adapter::RecordBatchStreamAdapter;
use common_recordbatch::{RecordBatch, SendableRecordBatchStream};
use datafusion::execution::TaskContext;
use datafusion::physical_plan::stream::RecordBatchStreamAdapter as DfRecordBatchStreamAdapter;
use datafusion::physical_plan::streaming::PartitionStream as DfPartitionStream;
use datafusion::physical_plan::SendableRecordBatchStream as DfSendableRecordBatchStream;
use datatypes::prelude::{ConcreteDataType, ScalarVectorBuilder, VectorRef};
use datatypes::schema::{ColumnSchema, Schema, SchemaRef};
use datatypes::value::Value;
use datatypes::vectors::StringVectorBuilder;
use snafu::{OptionExt, ResultExt};
use store_api::storage::{ScanRequest, TableId};

use super::SCHEMATA;
use crate::error::{
    CreateRecordBatchSnafu, InternalSnafu, Result, TableMetadataManagerSnafu,
    UpgradeWeakCatalogManagerRefSnafu,
};
use crate::system_schema::information_schema::{InformationTable, Predicates};
use crate::system_schema::utils;
use crate::CatalogManager;

pub const CATALOG_NAME: &str = "catalog_name";
pub const SCHEMA_NAME: &str = "schema_name";
const DEFAULT_CHARACTER_SET_NAME: &str = "default_character_set_name";
const DEFAULT_COLLATION_NAME: &str = "default_collation_name";
/// The database options
pub const SCHEMA_OPTS: &str = "options";
const INIT_CAPACITY: usize = 42;

/// The `information_schema.schemata` table implementation.
pub(super) struct InformationSchemaSchemata {
    schema: SchemaRef,
    catalog_name: String,
    catalog_manager: Weak<dyn CatalogManager>,
}

impl InformationSchemaSchemata {
    pub(super) fn new(catalog_name: String, catalog_manager: Weak<dyn CatalogManager>) -> Self {
        Self {
            schema: Self::schema(),
            catalog_name,
            catalog_manager,
        }
    }

    pub(crate) fn schema() -> SchemaRef {
        Arc::new(Schema::new(vec![
            ColumnSchema::new(CATALOG_NAME, ConcreteDataType::string_datatype(), false),
            ColumnSchema::new(SCHEMA_NAME, ConcreteDataType::string_datatype(), false),
            ColumnSchema::new(
                DEFAULT_CHARACTER_SET_NAME,
                ConcreteDataType::string_datatype(),
                false,
            ),
            ColumnSchema::new(
                DEFAULT_COLLATION_NAME,
                ConcreteDataType::string_datatype(),
                false,
            ),
            ColumnSchema::new("sql_path", ConcreteDataType::string_datatype(), true),
            ColumnSchema::new(SCHEMA_OPTS, ConcreteDataType::string_datatype(), true),
        ]))
    }

    fn builder(&self) -> InformationSchemaSchemataBuilder {
        InformationSchemaSchemataBuilder::new(
            self.schema.clone(),
            self.catalog_name.clone(),
            self.catalog_manager.clone(),
        )
    }
}

impl InformationTable for InformationSchemaSchemata {
    fn table_id(&self) -> TableId {
        INFORMATION_SCHEMA_SCHEMATA_TABLE_ID
    }

    fn table_name(&self) -> &'static str {
        SCHEMATA
    }

    fn schema(&self) -> SchemaRef {
        self.schema.clone()
    }

    fn to_stream(&self, request: ScanRequest) -> Result<SendableRecordBatchStream> {
        let schema = self.schema.arrow_schema().clone();
        let mut builder = self.builder();
        let stream = Box::pin(DfRecordBatchStreamAdapter::new(
            schema,
            futures::stream::once(async move {
                builder
                    .make_schemata(Some(request))
                    .await
                    .map(|x| x.into_df_record_batch())
                    .map_err(Into::into)
            }),
        ));
        Ok(Box::pin(
            RecordBatchStreamAdapter::try_new(stream)
                .map_err(BoxedError::new)
                .context(InternalSnafu)?,
        ))
    }
}

/// Builds the `information_schema.schemata` table row by row
///
/// Columns are based on <https://docs.pingcap.com/tidb/stable/information-schema-schemata>
struct InformationSchemaSchemataBuilder {
    schema: SchemaRef,
    catalog_name: String,
    catalog_manager: Weak<dyn CatalogManager>,

    catalog_names: StringVectorBuilder,
    schema_names: StringVectorBuilder,
    charset_names: StringVectorBuilder,
    collation_names: StringVectorBuilder,
    sql_paths: StringVectorBuilder,
    schema_options: StringVectorBuilder,
}

impl InformationSchemaSchemataBuilder {
    fn new(
        schema: SchemaRef,
        catalog_name: String,
        catalog_manager: Weak<dyn CatalogManager>,
    ) -> Self {
        Self {
            schema,
            catalog_name,
            catalog_manager,
            catalog_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
            schema_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
            charset_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
            collation_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
            sql_paths: StringVectorBuilder::with_capacity(INIT_CAPACITY),
            schema_options: StringVectorBuilder::with_capacity(INIT_CAPACITY),
        }
    }

    /// Construct the `information_schema.schemata` virtual table
    async fn make_schemata(&mut self, request: Option<ScanRequest>) -> Result<RecordBatch> {
        let catalog_name = self.catalog_name.clone();
        let catalog_manager = self
            .catalog_manager
            .upgrade()
            .context(UpgradeWeakCatalogManagerRefSnafu)?;
        let table_metadata_manager = utils::table_meta_manager(&self.catalog_manager)?;
        let predicates = Predicates::from_scan_request(&request);

        for schema_name in catalog_manager.schema_names(&catalog_name, None).await? {
            let opts = if let Some(table_metadata_manager) = &table_metadata_manager {
                table_metadata_manager
                    .schema_manager()
                    .get(SchemaNameKey::new(&catalog_name, &schema_name))
                    .await
                    .context(TableMetadataManagerSnafu)?
                    // information_schema is not available from this
                    // table_metadata_manager and we return None
                    .map(|schema_opts| format!("{}", schema_opts.into_inner()))
            } else {
                None
            };

            self.add_schema(
                &predicates,
                &catalog_name,
                &schema_name,
                opts.as_deref().unwrap_or(""),
            );
        }

        self.finish()
    }

    fn add_schema(
        &mut self,
        predicates: &Predicates,
        catalog_name: &str,
        schema_name: &str,
        schema_options: &str,
    ) {
        let row = [
            (CATALOG_NAME, &Value::from(catalog_name)),
            (SCHEMA_NAME, &Value::from(schema_name)),
            (DEFAULT_CHARACTER_SET_NAME, &Value::from("utf8")),
            (DEFAULT_COLLATION_NAME, &Value::from("utf8_bin")),
            (SCHEMA_OPTS, &Value::from(schema_options)),
        ];

        if !predicates.eval(&row) {
            return;
        }

        self.catalog_names.push(Some(catalog_name));
        self.schema_names.push(Some(schema_name));
        self.charset_names.push(Some("utf8"));
        self.collation_names.push(Some("utf8_bin"));
        self.sql_paths.push(None);
        self.schema_options.push(Some(schema_options));
    }

    fn finish(&mut self) -> Result<RecordBatch> {
        let columns: Vec<VectorRef> = vec![
            Arc::new(self.catalog_names.finish()),
            Arc::new(self.schema_names.finish()),
            Arc::new(self.charset_names.finish()),
            Arc::new(self.collation_names.finish()),
            Arc::new(self.sql_paths.finish()),
            Arc::new(self.schema_options.finish()),
        ];
        RecordBatch::new(self.schema.clone(), columns).context(CreateRecordBatchSnafu)
    }
}

impl DfPartitionStream for InformationSchemaSchemata {
    fn schema(&self) -> &ArrowSchemaRef {
        self.schema.arrow_schema()
    }

    fn execute(&self, _: Arc<TaskContext>) -> DfSendableRecordBatchStream {
        let schema = self.schema.arrow_schema().clone();
        let mut builder = self.builder();
        Box::pin(DfRecordBatchStreamAdapter::new(
            schema,
            futures::stream::once(async move {
                builder
                    .make_schemata(None)
                    .await
                    .map(|x| x.into_df_record_batch())
                    .map_err(Into::into)
            }),
        ))
    }
}