catalog/system_schema/information_schema/
schemata.rsuse std::sync::{Arc, Weak};
use arrow_schema::SchemaRef as ArrowSchemaRef;
use common_catalog::consts::INFORMATION_SCHEMA_SCHEMATA_TABLE_ID;
use common_error::ext::BoxedError;
use common_meta::key::schema_name::SchemaNameKey;
use common_recordbatch::adapter::RecordBatchStreamAdapter;
use common_recordbatch::{RecordBatch, SendableRecordBatchStream};
use datafusion::execution::TaskContext;
use datafusion::physical_plan::stream::RecordBatchStreamAdapter as DfRecordBatchStreamAdapter;
use datafusion::physical_plan::streaming::PartitionStream as DfPartitionStream;
use datafusion::physical_plan::SendableRecordBatchStream as DfSendableRecordBatchStream;
use datatypes::prelude::{ConcreteDataType, ScalarVectorBuilder, VectorRef};
use datatypes::schema::{ColumnSchema, Schema, SchemaRef};
use datatypes::value::Value;
use datatypes::vectors::StringVectorBuilder;
use snafu::{OptionExt, ResultExt};
use store_api::storage::{ScanRequest, TableId};
use super::SCHEMATA;
use crate::error::{
CreateRecordBatchSnafu, InternalSnafu, Result, TableMetadataManagerSnafu,
UpgradeWeakCatalogManagerRefSnafu,
};
use crate::system_schema::information_schema::{InformationTable, Predicates};
use crate::system_schema::utils;
use crate::CatalogManager;
pub const CATALOG_NAME: &str = "catalog_name";
pub const SCHEMA_NAME: &str = "schema_name";
const DEFAULT_CHARACTER_SET_NAME: &str = "default_character_set_name";
const DEFAULT_COLLATION_NAME: &str = "default_collation_name";
pub const SCHEMA_OPTS: &str = "options";
const INIT_CAPACITY: usize = 42;
pub(super) struct InformationSchemaSchemata {
schema: SchemaRef,
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
}
impl InformationSchemaSchemata {
pub(super) fn new(catalog_name: String, catalog_manager: Weak<dyn CatalogManager>) -> Self {
Self {
schema: Self::schema(),
catalog_name,
catalog_manager,
}
}
pub(crate) fn schema() -> SchemaRef {
Arc::new(Schema::new(vec![
ColumnSchema::new(CATALOG_NAME, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(SCHEMA_NAME, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(
DEFAULT_CHARACTER_SET_NAME,
ConcreteDataType::string_datatype(),
false,
),
ColumnSchema::new(
DEFAULT_COLLATION_NAME,
ConcreteDataType::string_datatype(),
false,
),
ColumnSchema::new("sql_path", ConcreteDataType::string_datatype(), true),
ColumnSchema::new(SCHEMA_OPTS, ConcreteDataType::string_datatype(), true),
]))
}
fn builder(&self) -> InformationSchemaSchemataBuilder {
InformationSchemaSchemataBuilder::new(
self.schema.clone(),
self.catalog_name.clone(),
self.catalog_manager.clone(),
)
}
}
impl InformationTable for InformationSchemaSchemata {
fn table_id(&self) -> TableId {
INFORMATION_SCHEMA_SCHEMATA_TABLE_ID
}
fn table_name(&self) -> &'static str {
SCHEMATA
}
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
fn to_stream(&self, request: ScanRequest) -> Result<SendableRecordBatchStream> {
let schema = self.schema.arrow_schema().clone();
let mut builder = self.builder();
let stream = Box::pin(DfRecordBatchStreamAdapter::new(
schema,
futures::stream::once(async move {
builder
.make_schemata(Some(request))
.await
.map(|x| x.into_df_record_batch())
.map_err(Into::into)
}),
));
Ok(Box::pin(
RecordBatchStreamAdapter::try_new(stream)
.map_err(BoxedError::new)
.context(InternalSnafu)?,
))
}
}
struct InformationSchemaSchemataBuilder {
schema: SchemaRef,
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
catalog_names: StringVectorBuilder,
schema_names: StringVectorBuilder,
charset_names: StringVectorBuilder,
collation_names: StringVectorBuilder,
sql_paths: StringVectorBuilder,
schema_options: StringVectorBuilder,
}
impl InformationSchemaSchemataBuilder {
fn new(
schema: SchemaRef,
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
) -> Self {
Self {
schema,
catalog_name,
catalog_manager,
catalog_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
schema_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
charset_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
collation_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
sql_paths: StringVectorBuilder::with_capacity(INIT_CAPACITY),
schema_options: StringVectorBuilder::with_capacity(INIT_CAPACITY),
}
}
async fn make_schemata(&mut self, request: Option<ScanRequest>) -> Result<RecordBatch> {
let catalog_name = self.catalog_name.clone();
let catalog_manager = self
.catalog_manager
.upgrade()
.context(UpgradeWeakCatalogManagerRefSnafu)?;
let table_metadata_manager = utils::table_meta_manager(&self.catalog_manager)?;
let predicates = Predicates::from_scan_request(&request);
for schema_name in catalog_manager.schema_names(&catalog_name, None).await? {
let opts = if let Some(table_metadata_manager) = &table_metadata_manager {
table_metadata_manager
.schema_manager()
.get(SchemaNameKey::new(&catalog_name, &schema_name))
.await
.context(TableMetadataManagerSnafu)?
.map(|schema_opts| format!("{}", schema_opts.into_inner()))
} else {
None
};
self.add_schema(
&predicates,
&catalog_name,
&schema_name,
opts.as_deref().unwrap_or(""),
);
}
self.finish()
}
fn add_schema(
&mut self,
predicates: &Predicates,
catalog_name: &str,
schema_name: &str,
schema_options: &str,
) {
let row = [
(CATALOG_NAME, &Value::from(catalog_name)),
(SCHEMA_NAME, &Value::from(schema_name)),
(DEFAULT_CHARACTER_SET_NAME, &Value::from("utf8")),
(DEFAULT_COLLATION_NAME, &Value::from("utf8_bin")),
(SCHEMA_OPTS, &Value::from(schema_options)),
];
if !predicates.eval(&row) {
return;
}
self.catalog_names.push(Some(catalog_name));
self.schema_names.push(Some(schema_name));
self.charset_names.push(Some("utf8"));
self.collation_names.push(Some("utf8_bin"));
self.sql_paths.push(None);
self.schema_options.push(Some(schema_options));
}
fn finish(&mut self) -> Result<RecordBatch> {
let columns: Vec<VectorRef> = vec![
Arc::new(self.catalog_names.finish()),
Arc::new(self.schema_names.finish()),
Arc::new(self.charset_names.finish()),
Arc::new(self.collation_names.finish()),
Arc::new(self.sql_paths.finish()),
Arc::new(self.schema_options.finish()),
];
RecordBatch::new(self.schema.clone(), columns).context(CreateRecordBatchSnafu)
}
}
impl DfPartitionStream for InformationSchemaSchemata {
fn schema(&self) -> &ArrowSchemaRef {
self.schema.arrow_schema()
}
fn execute(&self, _: Arc<TaskContext>) -> DfSendableRecordBatchStream {
let schema = self.schema.arrow_schema().clone();
let mut builder = self.builder();
Box::pin(DfRecordBatchStreamAdapter::new(
schema,
futures::stream::once(async move {
builder
.make_schemata(None)
.await
.map(|x| x.into_df_record_batch())
.map_err(Into::into)
}),
))
}
}