use std::sync::{Arc, Weak};
use arrow_schema::SchemaRef as ArrowSchemaRef;
use common_catalog::consts::INFORMATION_SCHEMA_KEY_COLUMN_USAGE_TABLE_ID;
use common_error::ext::BoxedError;
use common_recordbatch::adapter::RecordBatchStreamAdapter;
use common_recordbatch::{RecordBatch, SendableRecordBatchStream};
use datafusion::execution::TaskContext;
use datafusion::physical_plan::stream::RecordBatchStreamAdapter as DfRecordBatchStreamAdapter;
use datafusion::physical_plan::streaming::PartitionStream as DfPartitionStream;
use datafusion::physical_plan::SendableRecordBatchStream as DfSendableRecordBatchStream;
use datatypes::prelude::{ConcreteDataType, MutableVector, ScalarVectorBuilder, VectorRef};
use datatypes::schema::{ColumnSchema, Schema, SchemaRef};
use datatypes::value::Value;
use datatypes::vectors::{ConstantVector, StringVector, StringVectorBuilder, UInt32VectorBuilder};
use futures_util::TryStreamExt;
use snafu::{OptionExt, ResultExt};
use store_api::storage::{ScanRequest, TableId};
use super::KEY_COLUMN_USAGE;
use crate::error::{
CreateRecordBatchSnafu, InternalSnafu, Result, UpgradeWeakCatalogManagerRefSnafu,
};
use crate::system_schema::information_schema::{InformationTable, Predicates};
use crate::CatalogManager;
pub const CONSTRAINT_SCHEMA: &str = "constraint_schema";
pub const CONSTRAINT_NAME: &str = "constraint_name";
pub const TABLE_CATALOG: &str = "table_catalog";
pub const REAL_TABLE_CATALOG: &str = "real_table_catalog";
pub const TABLE_SCHEMA: &str = "table_schema";
pub const TABLE_NAME: &str = "table_name";
pub const COLUMN_NAME: &str = "column_name";
pub const ORDINAL_POSITION: &str = "ordinal_position";
const INIT_CAPACITY: usize = 42;
pub(crate) const PRI_CONSTRAINT_NAME: &str = "PRIMARY";
pub(crate) const TIME_INDEX_CONSTRAINT_NAME: &str = "TIME INDEX";
pub(crate) const INVERTED_INDEX_CONSTRAINT_NAME: &str = "INVERTED INDEX";
pub(crate) const FULLTEXT_INDEX_CONSTRAINT_NAME: &str = "FULLTEXT INDEX";
pub(crate) const SKIPPING_INDEX_CONSTRAINT_NAME: &str = "SKIPPING INDEX";
pub(super) struct InformationSchemaKeyColumnUsage {
schema: SchemaRef,
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
}
impl InformationSchemaKeyColumnUsage {
pub(super) fn new(catalog_name: String, catalog_manager: Weak<dyn CatalogManager>) -> Self {
Self {
schema: Self::schema(),
catalog_name,
catalog_manager,
}
}
pub(crate) fn schema() -> SchemaRef {
Arc::new(Schema::new(vec![
ColumnSchema::new(
"constraint_catalog",
ConcreteDataType::string_datatype(),
false,
),
ColumnSchema::new(
CONSTRAINT_SCHEMA,
ConcreteDataType::string_datatype(),
false,
),
ColumnSchema::new(CONSTRAINT_NAME, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(TABLE_CATALOG, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(
REAL_TABLE_CATALOG,
ConcreteDataType::string_datatype(),
false,
),
ColumnSchema::new(TABLE_SCHEMA, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(TABLE_NAME, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(COLUMN_NAME, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(ORDINAL_POSITION, ConcreteDataType::uint32_datatype(), false),
ColumnSchema::new(
"position_in_unique_constraint",
ConcreteDataType::uint32_datatype(),
true,
),
ColumnSchema::new(
"referenced_table_schema",
ConcreteDataType::string_datatype(),
true,
),
ColumnSchema::new(
"referenced_table_name",
ConcreteDataType::string_datatype(),
true,
),
ColumnSchema::new(
"referenced_column_name",
ConcreteDataType::string_datatype(),
true,
),
]))
}
fn builder(&self) -> InformationSchemaKeyColumnUsageBuilder {
InformationSchemaKeyColumnUsageBuilder::new(
self.schema.clone(),
self.catalog_name.clone(),
self.catalog_manager.clone(),
)
}
}
impl InformationTable for InformationSchemaKeyColumnUsage {
fn table_id(&self) -> TableId {
INFORMATION_SCHEMA_KEY_COLUMN_USAGE_TABLE_ID
}
fn table_name(&self) -> &'static str {
KEY_COLUMN_USAGE
}
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
fn to_stream(&self, request: ScanRequest) -> Result<SendableRecordBatchStream> {
let schema = self.schema.arrow_schema().clone();
let mut builder = self.builder();
let stream = Box::pin(DfRecordBatchStreamAdapter::new(
schema,
futures::stream::once(async move {
builder
.make_key_column_usage(Some(request))
.await
.map(|x| x.into_df_record_batch())
.map_err(Into::into)
}),
));
Ok(Box::pin(
RecordBatchStreamAdapter::try_new(stream)
.map_err(BoxedError::new)
.context(InternalSnafu)?,
))
}
}
struct InformationSchemaKeyColumnUsageBuilder {
schema: SchemaRef,
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
constraint_catalog: StringVectorBuilder,
constraint_schema: StringVectorBuilder,
constraint_name: StringVectorBuilder,
table_catalog: StringVectorBuilder,
real_table_catalog: StringVectorBuilder,
table_schema: StringVectorBuilder,
table_name: StringVectorBuilder,
column_name: StringVectorBuilder,
ordinal_position: UInt32VectorBuilder,
position_in_unique_constraint: UInt32VectorBuilder,
}
impl InformationSchemaKeyColumnUsageBuilder {
fn new(
schema: SchemaRef,
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
) -> Self {
Self {
schema,
catalog_name,
catalog_manager,
constraint_catalog: StringVectorBuilder::with_capacity(INIT_CAPACITY),
constraint_schema: StringVectorBuilder::with_capacity(INIT_CAPACITY),
constraint_name: StringVectorBuilder::with_capacity(INIT_CAPACITY),
table_catalog: StringVectorBuilder::with_capacity(INIT_CAPACITY),
real_table_catalog: StringVectorBuilder::with_capacity(INIT_CAPACITY),
table_schema: StringVectorBuilder::with_capacity(INIT_CAPACITY),
table_name: StringVectorBuilder::with_capacity(INIT_CAPACITY),
column_name: StringVectorBuilder::with_capacity(INIT_CAPACITY),
ordinal_position: UInt32VectorBuilder::with_capacity(INIT_CAPACITY),
position_in_unique_constraint: UInt32VectorBuilder::with_capacity(INIT_CAPACITY),
}
}
async fn make_key_column_usage(&mut self, request: Option<ScanRequest>) -> Result<RecordBatch> {
let catalog_name = self.catalog_name.clone();
let catalog_manager = self
.catalog_manager
.upgrade()
.context(UpgradeWeakCatalogManagerRefSnafu)?;
let predicates = Predicates::from_scan_request(&request);
for schema_name in catalog_manager.schema_names(&catalog_name, None).await? {
let mut stream = catalog_manager.tables(&catalog_name, &schema_name, None);
while let Some(table) = stream.try_next().await? {
let table_info = table.table_info();
let table_name = &table_info.name;
let keys = &table_info.meta.primary_key_indices;
let schema = table.schema();
let pk_as_inverted_index = !schema
.column_schemas()
.iter()
.any(|c| c.has_inverted_index_key());
for (idx, column) in schema.column_schemas().iter().enumerate() {
let mut constraints = vec![];
if column.is_time_index() {
self.add_key_column_usage(
&predicates,
&schema_name,
TIME_INDEX_CONSTRAINT_NAME,
&catalog_name,
&schema_name,
table_name,
&column.name,
1, );
}
if keys.contains(&idx) {
constraints.push(PRI_CONSTRAINT_NAME);
if pk_as_inverted_index {
constraints.push(INVERTED_INDEX_CONSTRAINT_NAME);
}
}
if column.is_inverted_indexed() {
constraints.push(INVERTED_INDEX_CONSTRAINT_NAME);
}
if column.is_fulltext_indexed() {
constraints.push(FULLTEXT_INDEX_CONSTRAINT_NAME);
}
if column.is_skipping_indexed() {
constraints.push(SKIPPING_INDEX_CONSTRAINT_NAME);
}
if !constraints.is_empty() {
let aggregated_constraints = constraints.join(", ");
self.add_key_column_usage(
&predicates,
&schema_name,
&aggregated_constraints,
&catalog_name,
&schema_name,
table_name,
&column.name,
idx as u32 + 1,
);
}
}
}
}
self.finish()
}
#[allow(clippy::too_many_arguments)]
fn add_key_column_usage(
&mut self,
predicates: &Predicates,
constraint_schema: &str,
constraint_name: &str,
table_catalog: &str,
table_schema: &str,
table_name: &str,
column_name: &str,
ordinal_position: u32,
) {
let row = [
(CONSTRAINT_SCHEMA, &Value::from(constraint_schema)),
(CONSTRAINT_NAME, &Value::from(constraint_name)),
(REAL_TABLE_CATALOG, &Value::from(table_catalog)),
(TABLE_SCHEMA, &Value::from(table_schema)),
(TABLE_NAME, &Value::from(table_name)),
(COLUMN_NAME, &Value::from(column_name)),
(ORDINAL_POSITION, &Value::from(ordinal_position)),
];
if !predicates.eval(&row) {
return;
}
self.constraint_catalog.push(Some("def"));
self.constraint_schema.push(Some(constraint_schema));
self.constraint_name.push(Some(constraint_name));
self.table_catalog.push(Some("def"));
self.real_table_catalog.push(Some(table_catalog));
self.table_schema.push(Some(table_schema));
self.table_name.push(Some(table_name));
self.column_name.push(Some(column_name));
self.ordinal_position.push(Some(ordinal_position));
self.position_in_unique_constraint.push(None);
}
fn finish(&mut self) -> Result<RecordBatch> {
let rows_num = self.table_catalog.len();
let null_string_vector = Arc::new(ConstantVector::new(
Arc::new(StringVector::from(vec![None as Option<&str>])),
rows_num,
));
let columns: Vec<VectorRef> = vec![
Arc::new(self.constraint_catalog.finish()),
Arc::new(self.constraint_schema.finish()),
Arc::new(self.constraint_name.finish()),
Arc::new(self.table_catalog.finish()),
Arc::new(self.real_table_catalog.finish()),
Arc::new(self.table_schema.finish()),
Arc::new(self.table_name.finish()),
Arc::new(self.column_name.finish()),
Arc::new(self.ordinal_position.finish()),
Arc::new(self.position_in_unique_constraint.finish()),
null_string_vector.clone(),
null_string_vector.clone(),
null_string_vector,
];
RecordBatch::new(self.schema.clone(), columns).context(CreateRecordBatchSnafu)
}
}
impl DfPartitionStream for InformationSchemaKeyColumnUsage {
fn schema(&self) -> &ArrowSchemaRef {
self.schema.arrow_schema()
}
fn execute(&self, _: Arc<TaskContext>) -> DfSendableRecordBatchStream {
let schema = self.schema.arrow_schema().clone();
let mut builder = self.builder();
Box::pin(DfRecordBatchStreamAdapter::new(
schema,
futures::stream::once(async move {
builder
.make_key_column_usage(None)
.await
.map(|x| x.into_df_record_batch())
.map_err(Into::into)
}),
))
}
}